Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 66))

  • 83 Accesses

Abstract

A new approach to architecture based on the use of a laser as a nonlinear discriminator for all-optical, auto- and hetero-associative memories is presented. The laser operates in a regime of spatial multistability, i.e., of the coexistence of different stable stationary states. Numerical calculations in the simplest situations indicate that the laser is able to decide which of its stationary states is most similar to a field pattern that is injected into the laser itself. The laser is combined with a linear system composed of lenses, holograms, and a pinhole mask. The memory is constituted of a certain number of images that are stored in one of the holograms and which are in one-to-one correspondence with the stationary states of the laser. The task of the linear part is (a) to convert an arbitrary image offered to the system into an appropriate field pattern, which is injected into the laser; and (b) to convert the stationary beam, which emerges from the laser, into the corresponding image in memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodman, J.W., Leonberger, F.J., Kung, S.Y., Athale, R.A.: Proc. IEEE 72 1984, 850.

    Article  ADS  Google Scholar 

  2. Gabor, D.: IBM J. Res. Dev. 13, 1969, 156.

    Article  Google Scholar 

  3. Van der Lugt, A.B.: IEEE Trans. Inf. Theory, IJ-10 1964, 139.

    Article  Google Scholar 

  4. Hopfield, J.J.: Proc. Nat. Acad. Sc. USA, 79 1982, 2554.

    Article  MathSciNet  ADS  Google Scholar 

  5. Kohonen, T.: Self-Organization and Associative Memory. Springer-Verlag, 1984.

    MATH  Google Scholar 

  6. Carpenter, G.A., Grossberg, S.: Appl. Opt. 26 1987, 4919.

    Article  ADS  Google Scholar 

  7. Cohen, M.S.: Appl. Opt. 25 1986, 2288.

    Article  ADS  Google Scholar 

  8. Psaltis, D., Farhat, N.H.: Opt. Lett. 10 1985, 98.

    Article  ADS  Google Scholar 

  9. Abu-Mostafa, Y.S., Psaltis, D.: Scientific American, 88 March 1987.

    Google Scholar 

  10. Soffer, B.H., Dunning, C.J., Owechko, Y., Marom, E.: Opt. Lett. 11 1986, 118.

    Article  ADS  Google Scholar 

  11. Yariv, A., Sze-Keung Kwong: Opt. Lett. 11 1986, 186.

    Article  ADS  Google Scholar 

  12. Anderson, D.Z., Lininger, D.M., Feinberg, J.: Opt. Lett. 12 1987, 123.

    Article  ADS  Google Scholar 

  13. Anderson, D.Z.: In AIP Conf. Proc. n. 151 1986, 12.

    Article  ADS  Google Scholar 

  14. Lalanne, P., Chavel, P., Taboury, J.: Appl. Opt. 28 1989, 377.

    Article  ADS  Google Scholar 

  15. Haken, H.: In Computational Systems — Natural and Artificial. Ed. Haken, H., Springer-Verlag, Berlin, 1987, 2.

    Chapter  Google Scholar 

  16. Fuchs, A., Haken, H.: In Neural and Synergetic Computers. Ed. Haken, H., Springer-Verlag, Berlin, 1988, 16.

    Google Scholar 

  17. Vorontsov, M.A.: Proc. SPIE 402 1991, 116.

    Article  Google Scholar 

  18. Tamm C., Weiss, C.O.: J. Opt. Soc. Am. B 7 1990, 1034.

    Article  ADS  Google Scholar 

  19. Brambilla, M., Battipede, F., Lugiato, L.A., Penna, V., Prati, F., Tamm, C., Weiss, C.O.: Phys. Rev. A 43 1991, 5090.

    Article  ADS  Google Scholar 

  20. Brambilla, M., Lugiato, L.A., Penna, V., Prati, F., Tamm, C., Weiss, C.O.: Phys. Rev. A 43 1991, 5114.

    Article  ADS  Google Scholar 

  21. Brown, B.R., Lohmann, A.W.: IBM J. Res. & Dev. 13 1969, 160.

    Article  Google Scholar 

  22. Lee, H.W.: In Progress in Optics XVI. Ed. Wolf, E., North-Holland, Amsterdam, 1978, 119.

    Google Scholar 

  23. Kogelnik, H.: In Lasers: A Series of Advances. Ed. Levine, A.K., 1, Marcel Dekker, New York, 1966, 295.

    Google Scholar 

  24. Lugiato, L.A., Prati, F., Narducci, L.M., Oppo, J.L.: Opt. Comm. 69 1989, 387.

    Article  ADS  Google Scholar 

  25. Brambilla, M., Lugiato, L.A., Pinna, M.V., Prati, F., Pagani, P., Vanotti, P., Li, M. Y., Weiss, C.O.: Submitted for publication.

    Google Scholar 

  26. Anderson, D.Z.: Opt. Lett. 11 1986, 56.

    Article  ADS  Google Scholar 

  27. Farhat, N.H., Psaltis, D.: In Optical Signal Processing. Ed. Horner, J.L., Academic Press, San Diego, 1987, Chapts. 2, 3.

    Google Scholar 

  28. Rajbenbach, H., Bann, S., Huignard, J.P.: Optical Computing Topical Meeting, Salt Lake City, March 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brambilla, M., Lugiato, L.A., Pinna, M.V., Pratti, F., Pagani, P., Vanotti, P. (1995). Laser-Based Optical Associative Memories. In: Vorontsov, M.A., Miller, W.B. (eds) Self-Organization in Optical Systems and Applications in Information Technology. Springer Series in Synergetics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97525-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97525-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97527-1

  • Online ISBN: 978-3-642-97525-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics