Advertisement

Tunneling Ionization of Atoms

  • Nikolai B. Delone
  • Vladimir P. Krainov
Chapter
Part of the Atoms+Plasmas book series (SSAOPP, volume 13)

Keywords

Electric Field Strength Polarization Plane Ionization Probability Electron Momentum Ponderomotive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

As we said in Chap. 1, the condition for tunneling ionization to occur is the inequality γ 2«1, where γ = ω(2E i)1/2/F is the adiabaticity parameter. Recall that ω and F are the radiation frequency and the electric field amplitude for the electromagnetic radiation, and is the binding energy of the initial atomic state. Although the adiabaticity parameter arose in the description of nonlinear ionization from a short-range potential well (Chap. 3), recently it was shown that it is also applicable to the case of a hydrogen atom. This result is an argument for applying the adiabaticity parameter to complex atoms as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    L.D. Landau, E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Pergamon, Oxford 1977)Google Scholar
  2. 4.2
    N.B. Delone, V.P. Krainov: Atoms in Strong Light Fields, Springer Ser. Chem. Phys., Vol. 28 (Springer, Berlin-Heidelberg 1985)Google Scholar
  3. 4.3
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev: Zh. Eksp. Teor. Fiz. 50, 1393 (1966) [English transi.: Sov. Phys. JETP 23, 924 (1966)]Google Scholar
  4. 4.4
    M.V. Ammosov, N.B. Delone, V.P. Krainov: Zh. Eksp. Teor. Fiz. 91, 2008 (1986) [English transl.: Sov. Phys. JETP 64, 1191 (1986)]Google Scholar
  5. 4.5
    V.P. Krainov, S.S. Todirashku: Zh. Eksp. Teor. Fiz. 83, 1310 (1982) [English transi.: Sov. Phys. JETP 56, 751 (1982)]Google Scholar
  6. 4.6
    A.I. Nikishov, V.I. Ritus: Zh. Eksp. Teor. Fiz. 50, 255 (1966) [English transl.: Sov. Phys. JETP 23, 168 (1966)Google Scholar
  7. 4.7
    N.B. Delone, V.P. Krainov: J. Opt. Soc. Am. B 8, 1207 (1991)ADSCrossRefGoogle Scholar
  8. 4.8
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev: Zh. Eksp. Teor. Fiz. 51, 309 (1966) [English transl.: Sov. Phys. JETP 24, 207 (1967)]Google Scholar
  9. 4.9
    P.B. Corkum, N.H. Burnett, F. Brunei: Phys. Rev. Lett. 62, 1259 (1989)ADSCrossRefGoogle Scholar
  10. 4.10
    V.P. Krainov, V.M. Ristic: Zh. Eksp. Teor. Ziz. 101, 1479 (1992) [English transi.: Sov. Phys. JETP 74, 789 (1992)]Google Scholar
  11. 4.11
    S.P. Goreslavsky, N.B. Narozhny, V.P. Yakovlev: J. Opt. Soc. Am. B 6, 1752 (1989)ADSCrossRefGoogle Scholar
  12. 4.12
    W. Xiong, S.L. Chin: Zh. Eksp. Teor. Fiz. 99, 481 (1991) [English transi.: Sov. Phys. JETP 62, 268 (1991)Google Scholar
  13. 4.13
    H. Bethe, E.E. Salpeter: Quantum Mechanics of One- and Two-Electron Atoms, 2nd edn. (Rosetta, New York 1977)CrossRefGoogle Scholar
  14. 4.14
    S. Flügge: Practical Quantum Mechanics I (Springer, Berlin-Heidelberg, 1971)Google Scholar
  15. 4.15
    S.L. Chin, F. Yergeau, P. Lavigne: J. Phys. B 18, L213 (1985)ADSCrossRefGoogle Scholar
  16. 4.16
    F. Yergeau, S.L. Chin, P. Lavigne: J. Phys. B 20, 723 (1987)ADSCrossRefGoogle Scholar
  17. 4.17
    S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J.H. Eberly: Phys. Rev. Lett. 63, 2212 (1989)ADSCrossRefGoogle Scholar
  18. 4.18
    H.R. Reiss: Phys. Rev. A 42, 1563 (1990)CrossRefGoogle Scholar
  19. 4.19
    B.M. Boreham, B. Luther-Davies: J. Appl. Phys. 50, 2533 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Nikolai B. Delone
    • 1
  • Vladimir P. Krainov
    • 2
  1. 1.General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Department of Theoretical PhysicsMoscow Institute of Physics and TechnologyDolgopzudny Moscow RegionRussia

Personalised recommendations