Advertisement

Maslov’s Method of the Canonical Operator

  • Yu. A. Kravtsov
  • Yu. I. Orlov
Part of the Springer Series on Wave Phenomena book series (SSWAV, volume 15)

Abstract

This method evolved from a very simple idea of describing the asymptotic of the field first in a mixed coordinate-momentum space and performing the Fourier transformation next in the configuration space. This idea proved to be extremely fruitful and effective, and leads to the formulation of heuristic applicability conditions of Maslov’s method.

Keywords

Asymptotic Solution Configuration Space Helmholtz Equation Geometrical Optic Canonical Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    V.P. Maslov: Théorie des Perturbations et Méthode Asymptotique (Dunod, Paris 1972)Google Scholar
  2. 6.2
    Yu.A. Kravtsov: Sov. Phys.-Acoust. 14, 1 (1968)Google Scholar
  3. 6.3
    J.M. Arnold: Radio Sci. 17, 1181 (1982)ADSCrossRefGoogle Scholar
  4. 6.4
    R. Ziolkowski, G.A. Deschamps: Rad. Sci. 19, 1001 (1984)ADSCrossRefGoogle Scholar
  5. 6.5
    B.R. Vainberg: In Teoriya Rasprostraneniya Voln v Neodnorodnykh i Nelineinykh Sredakh (theory of wave propagation in inhomogenous and nonlinear media) (Izd. IRE Akad. Nauk SSSR, Moscow 1979) p. 144Google Scholar
  6. 6.6
    V.P. Maslov, M.V. Fedoryuk: Semiclassical Approximation in Quantum Mechanics (Reidel, Higham, MA 1981)Google Scholar
  7. 6.8
    L. Hörmander: Fourier Integral Operators 127, 79 (1971)MATHGoogle Scholar
  8. 6.9
    A.D. Gorman, R. Wells, G.N. Gleming: J. Phys. A 14, 1519 (1981)MathSciNetADSMATHGoogle Scholar
  9. 6.10
    K. Hogo, Yu. Yi: Radio Sci. 22, 357 (1987)ADSCrossRefGoogle Scholar
  10. 6.11
    D.S. Lukin, E.A. Palkin: In Teoreticheskoye i Experimentalnoye Issledovanie Rasprostraneniya Dekametrovykh Radiovoln (theoretical and experimental investigation of decameter radiowave propagation) (IZMIRAN SSSR, Moscow 1976) p. 149Google Scholar
  11. 6.12
    A.A. Kryukovsky, D.S. Lukin, E.A. Palkin: Volnovaya teoriya katastrof (wave theory of catastrophes) (Nauka, Moscow) in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Yu. A. Kravtsov
    • 1
  • Yu. I. Orlov
    • 2
  1. 1.General Physics Institute Division GROTRussian Academy of SciencesMoscowRussia
  2. 2.Power Engineering InstituteMoscowRussia

Personalised recommendations