Semiconductors and Insulators

  • Peter Fulde
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 100)


Electron correlations are very important in the study of semiconductors and insulators. This statement is not in contradiction with the observation that most experiments in semiconductor physics can be described within a one-particle picture. It merely shows that the quasiparticle concept works very well in these systems. A noticeable exception is the fractional quantum Hall effect, which is based exclusively on correlations and in which the quasiparticles obey fractional instead of Fermi statistics [9.1]. Even for a system like silicon, ab initio calculations show that electronic correlations contribute roughly one-third of the binding energy.


Correlation Energy Pair Correlation Function Extra Electron Fractional Quantum Hall Effect Quasiparticle Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 9

  1. 9.1
    R.B. Laughlin: In The Quantum Hall Effect, ed. by R.E. Prange, S.M. Girvin, 2nd edn. (Springer, Berlin, Heidelberg 1990)Google Scholar
  2. 9.2
    B. Kiel, G. Stollhoff, C. Weigel, P. Fulde, H. Stoll: Z. Phys. B 46, 1 (1982)ADSCrossRefGoogle Scholar
  3. 9.3
    M.V. Ganduglia Pirovano, G. Stollhoff, P. Fulde, K.P. Bohnen: Phys. Rev. B 39, 5156 (1989)ADSCrossRefGoogle Scholar
  4. 9.4
    S. Fahy, X.W. Wang, S.G. Louie: Phys. Rev. Lett. 61, 1631 (1988)ADSCrossRefGoogle Scholar
  5. 9.5
    Program package “CRYSTAL”, described in C. Pisani, R. Dovesi, C. Roetti: Hartree-Fock Ab Initio Treatment of Crystalline Systems, Lect. Notes Chem., Vol. 48 (Springer, Berlin, Heidelberg 1988)Google Scholar
  6. 9.6
    W. Borrmann, P. Fulde: Phys. Rev. B 31, 7800 (1985)ADSCrossRefGoogle Scholar
  7. 9.7
    G. Stollhoff, K.B. Bohnen: Phys. Rev. B 37, 4678 (1988)ADSCrossRefGoogle Scholar
  8. 9.8
    W. Borrmann, P. Fulde: Phys. Rev. B 35, 9569 (1987)ADSCrossRefGoogle Scholar
  9. 9.9
    L. Hedin: Phys. Rev. 139, A 796 (1965)ADSGoogle Scholar
  10. 9.10
    J. Schwinger: Proc. Natl. Acad. Sci. USA 37, 452 (1951)MathSciNetADSCrossRefGoogle Scholar
  11. 9.11
    J. Slater: Quantum Theory of Atomic Structure, Vol. IV (McGraw-Hill, New York 1960)Google Scholar
  12. 9.12
    L. Hedin, S. Lundqvist: In Solid State Physics, Vol. 23, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York 1969)Google Scholar
  13. 9.13
    G. Strinati, H.J. Mattausch, W. Hanke: Phys. Rev. B 25, 2867 (1982)ADSCrossRefGoogle Scholar
  14. 9.14
    M.S. Hybertsen, S. Louie: Phys. Rev. Lett. 55, 1418 (1985); Phys. Rev. B 34, 5390 (1986)ADSCrossRefGoogle Scholar
  15. 9.15
    W. von der Linden, P. Horsch: Phys. Rev. B 37, 8351 (1988)ADSCrossRefGoogle Scholar
  16. 9.16
    R.W. Godby, M. Schlüter, L.H. Sham: Phys. Rev. B 37, 10159 (1988)ADSGoogle Scholar
  17. 9.17
    F. Gygi, A. Baldereschi: Phys. Rev. Lett. 62, 2160 (1989)ADSCrossRefGoogle Scholar
  18. 9.18
    R. Hott: Ph.D. Thesis, Universität Stuttgart (1990)Google Scholar
  19. 9.19
    A.L. Fetter, J.D. Walecka: Quantum Theory of Many-Particle Systems (McGraw-Hill, New York 1971)Google Scholar

Copyright information

© Springer -Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Peter Fulde
    • 1
  1. 1.MPI für FestkörperforschungStuttgart 80Deutschland

Personalised recommendations