Advertisement

The Independent-Electron Approximation

  • Peter Fulde
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 100)

Abstract

Calculations within the independent-electron approximation are often a prerequisite for those which include correlation effects. The assumption of independently moving electrons implies that the total wavefunction of the iV-eLectron system Φ(r 1σ1, … ,r N σ N ) can be written in the form of an anti-symmetrized product of single-electron wavefunctions ϕ(r i σ i ).

Keywords

Valence Electron Slater Determinant Pseudo Orbital Unfavorable Configuration Zero Differential Overlap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2

  1. 2.1
    J.C. Slater: Phys. Rev. 36, 57 (1930)ADSCrossRefGoogle Scholar
  2. 2.2
    G. Burns: J. Chem. Phys. 41, 1521 (1964)ADSCrossRefGoogle Scholar
  3. 2.3
    E. Clementi, D.J. Raimondi: J. Chem. Phys. 38, 2686 (1963)ADSCrossRefGoogle Scholar
  4. 2.4
    S.F. Boys: Proc. R. Soc. London A 200, 542 (1950)ADSMATHCrossRefGoogle Scholar
  5. 2.5
    C.CJ. Roothaan: Rev. Mod. Phys. 23, 69 (1951)ADSMATHCrossRefGoogle Scholar
  6. 2.6
    J.M. Foster, S.F. Boys: Rev. Mod. Phys. 32, 300 (1960)MathSciNetADSCrossRefGoogle Scholar
  7. 2.7
    C. Edmiston, K. Ruedenberg: Rev. Mod. Phys. 35, 457 (1963)ADSMATHCrossRefGoogle Scholar
  8. 2.8
    S. Huzinaga: J. Chem. Phys. 42, 1293 (1965);ADSCrossRefGoogle Scholar
  9. D.R. Whitman, C.J. Hornback: J. Chem. Phys. 51, 398 (1968)ADSCrossRefGoogle Scholar
  10. 2.9
    R. Pariser, R.G. Parr: J. Chem. Phys. 21, 466, 767 (1953)ADSCrossRefGoogle Scholar
  11. J.A. Pople: Trans. Faraday Soc. 49, 1375 (1953)CrossRefGoogle Scholar
  12. 2.10
    M. Scholz, H.-J. Köhler: “Quantenchemische Näherungsverfahren und ihre Anwendung in der organischen Chemie”, in Quantenchemie-Ein Lehrgang, ed. by W. Haberditzl, M. Scholz, L. Zülicke (Deutscher Verlag der Wissenschaften, Berlin 1981)Google Scholar
  13. 2.11
    R.S. Mulliken: J. Chem. Phys. 46, 497 (1949)Google Scholar
  14. 2.12
    N. Mataga, K. Nishimoto: Z. Phys. Chem. N.F. 12, 335 (1957); ibid 13, 140 (1957)CrossRefGoogle Scholar
  15. 2.13
    K. Ohno: Theor. Chim. Acta 2, 219 (1964)CrossRefGoogle Scholar
  16. 2.14
    G. Klopman: J. Am. Chem. Soc. 86, 4450 (1964)Google Scholar
  17. 2.15
    U. Wedig: Diploma Thesis, Universität Stuttgart (1982)Google Scholar
  18. 2.16
    P. Preuss, H. Stoll, U. Wedig, Th. Krüger: Int. J. Quantum Chem. 19, 113 (1981)CrossRefGoogle Scholar
  19. 2.17
    T.A. Koopmans: Physica 1, 104 (1933)ADSMATHCrossRefGoogle Scholar
  20. 2.18
    C. Kittel: Quantum Theory of Solids (Wiley, New York 1963)Google Scholar
  21. 2.19
    E.P. Wigner: Phys. Rev. 46, 1002 (1934); Trans. Faraday Soc. 205, 678 (1938)ADSMATHCrossRefGoogle Scholar
  22. 2.20
    J. Slater: Quantum Theory of Atomic Structure, Vols. I–IV (McGraw-Hill, New York 1960)Google Scholar
  23. 2.21
    A. Veillard, E. Clementi: J. Chem. Phys. 49, 2415 (1968)ADSCrossRefGoogle Scholar
  24. 2.22
    R.K. Nesbet: Phys. Rev. 175, 2 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer -Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Peter Fulde
    • 1
  1. 1.MPI für FestkörperforschungStuttgart 80Deutschland

Personalised recommendations