Skip to main content

Theory of Non-contact Force Microscopy

  • Chapter
Scanning Tunneling Microscopy III

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 29))

Abstract

Different forces which may be present in non-contact scanning force microscopy are theoretically analyzed with respect to their typical magnitude and range. It is shown that van der Waals forces provide an ever-present contribution to long-range probe-sample interactions. If a liquid is present in the intervening gap between probe and sample, it is found that ionic double-layer forces may play an important role. If the probe is in very close proximity to the substrate, the discrete structure of intervening liquids may lead to characteristic solvation forces. For liquids being present as thin adsorbed films on top of the substrate, capillary forces turn out to be the source of very strong long-range probe-sample interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Lifshitz: J. Exper. Theoret. Phys. USSR 29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)]

    Google Scholar 

  2. R. Eisenschitz, F. London: Z. Phys. 60, 491 (1930)

    Article  ADS  Google Scholar 

  3. H.B.G. Casimir, D. Polder: Phys. Rev. 73, 360 (1948); H.B.G. Casimir: Proc. Kon. Ned. Akad. Wetensch. 51, 793 (1948)

    Article  ADS  MATH  Google Scholar 

  4. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii: Adv. Phys. 10, 165 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  5. A comprehensive survey of the basic theory of van der Waals forces between macroscopic bodies is, e.g., given by J. Mahanty and B.W. Ninham: Dispersion Forces (Academic, London 1976)

    Google Scholar 

  6. H.C. Hamaker: Physica 4, 1058 (1937)

    Article  ADS  Google Scholar 

  7. U. Hartmann: Phys. Rev. B 42, 1541 (1990)

    Article  ADS  Google Scholar 

  8. An excellent review on various micro-and macroscopic aspects of molecular interactions is given by J.N. Israelachvili: Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems (Academic, London 1985)

    Google Scholar 

  9. U. Hartmann: Phys. Rev. B 43, 2404 (1991)

    Article  ADS  Google Scholar 

  10. See for example: J.N. Israelachvili: Proc. R. Soc. Lond. A 331, 39 (1972)

    Google Scholar 

  11. B.V. Derjaguin: Koll. Z. 69, 155 (1934)

    Article  Google Scholar 

  12. U. Hartmann: J. Vac. Sci. Technol. B 9, 465 (1991)

    Article  Google Scholar 

  13. Yu.N. Moiseev, V.M. Mostepanenko, V.I. Panov, I.Yu. Sokolov: Phys. Lett. A 132, 354 (1988)

    Article  ADS  Google Scholar 

  14. M. Anders (unpublished result)

    Google Scholar 

  15. L.D. Landau and E.M. Lifshitz: Electrodynamics of Continuous Media (Addison-Wesley, Reading/MA 1960)

    MATH  Google Scholar 

  16. U. Hartmann: Adv. Mat. 2, 594 (1991)

    Article  Google Scholar 

  17. J.N. Israelachvili: Proc. R. Soc. Lond. A 331, 19 (1972)

    Article  ADS  Google Scholar 

  18. See standard textbooks, e.g., J.D. Jackson: Classical Electrodynamics (Wiley, New York 1975)

    Google Scholar 

  19. G. Feinberg and S. Sucher: Phys. Rev. A 2, 2395 (1970); G. Feinberg: Phys. Rev. B 9, 2490 (1974)

    Article  ADS  Google Scholar 

  20. T. Datta, L.H. Ford: Phys. Lett. A 83, 314 (1981)

    Article  ADS  Google Scholar 

  21. About the same conclusions have previously been drawn by V.M. Mostepanenko, I.Yu. Sokolov: Dokl. Akad. Nauk SSSR 298, 1380 (1988) [Sov. Phys. Dokl. 33, 140 (1988)]

    Google Scholar 

  22. E. Zaremba, W. Kohn: Phys. Rev. B 13, 2270 (1976)

    Article  ADS  Google Scholar 

  23. C. Girad: Phys. Rev. B 43, 8822 (1991)

    Article  ADS  Google Scholar 

  24. D.M. Eigler, E.K. Schweizer: Nature 334, 524 (1990)

    Article  ADS  Google Scholar 

  25. K.E. Drexler: J. Vac. Sci. Technol. B 9, 1394 (1991)

    Article  Google Scholar 

  26. H. Lemke, T. Göddenhenrich, H.P. Bochem, U. Hartmann, C. Heiden: Rev. Sci. Instrum. 61, 2538 (1990)

    Article  ADS  Google Scholar 

  27. C.M. Mate, M.R. Lorenz, V.J. Novotny: J. Chem. Phys. 90, 7550 (1989)

    Article  ADS  Google Scholar 

  28. See, e.g., H. Räther: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, Heildelberg 1988), as well as several articles on plasmon observation by scanning tunneling microscopy

    Google Scholar 

  29. For a fuller discussion of this issue see, e.g., P.C. Hiemenz: Principles of Colloid and Surface Chemistry (Dekker, New York 1977)

    Google Scholar 

  30. For some extensive reviews on this subject see, e.g., D. Nicholson and N.D. Personage: Computer Simulations and the Statistical Mechanics of Adsorption (Academic, New York 1982); G. Rickayzen and P. Richmond: in Thin Liquid Films, ed. by I.B. Ivanov (Dekker, New York 1985)

    Google Scholar 

  31. S.T. Chui: Phys. Rev. B 43, 10654 (1991), and references therein

    Article  MathSciNet  ADS  Google Scholar 

  32. The upper limit is additionally constrained by the fact that ε(δ) must of course be finite. Convergence of (12.106) requires ϱ(δ) < ϱb(εb + 2)/(εb − 1). However, this criterion only becomes relevant if the excess surface density for the gap between probe and sample is almost the same as for the free surfaces, and if this free surface molecular density is much higher than the bulk liquid density. For ϱ(∞) ≈ ϱb as used in the following, ϱ(δ)/ϱ(∞) < 2.6 can be considered as the relevant criterion for all immersion liquids (with εb < 2.9).

    Google Scholar 

  33. See, e.g., A.W. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1976)

    Google Scholar 

  34. A.L. Weisenhorn, P.K. Hamsma, T.R. Albrecht, C.F. Quate: Appl. Phys. Lett. 54, 2651 (1989)

    Article  ADS  Google Scholar 

  35. See R. Evans, U.M.B. Marconi, P. Tarazona: J. Chem. Phys. 84, 2376 (1986), and references therein

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmann, U. (1993). Theory of Non-contact Force Microscopy. In: Wiesendanger, R., Güntherodt, HJ. (eds) Scanning Tunneling Microscopy III. Springer Series in Surface Sciences, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97470-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97470-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97472-4

  • Online ISBN: 978-3-642-97470-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics