Direct Evaluation of Path Integrals

  • Walter Dittrich
  • Martin Reuter


Until now we have always used a trick to calculate the path integral in
$$ K\left( {{x_{2}},\,{t_{2}};\,{x_{1}},\,{t_{1}}} \right) = {{\text{e}}^{{\left( {{\text{i/}}\hbar } \right){S_{{{\text{cl}}}}}\left[ {x\left( t \right)} \right]}}}\int_{{y\left( {{t_{1}}} \right) = 0}}^{{y\left( {{t_{2}}} \right) = 0}} {\left[ {dy\left( t \right)} \right]} {\text{ }} \times \exp \left\{ {\frac{{\text{i}}}{\hbar }\int_{{{t_{1}}}}^{{{t_{2}}}} {dt\left( {a\left( t \right){y^{2}} + b\left( t \right)y\dot{y} + c\left( t \right){{\dot{y}}^{2}}} \right)} } \right\}. $$


Path Integral Phase Factor Free Particle Integration Measure Direct Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Walter Dittrich
    • 1
  • Martin Reuter
    • 2
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenGermany
  2. 2.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations