Transkranielle magnetische Stimulation

  • D. Claus

Zusammenfassung

Merton u. Morton hatten 1980 gezeigt, daß der menschliche Kortex transkraniell elektrisch gereizt werden kann [36]. Der Stimulus muß aber, um die kapazitiven Widerstände von Kalotte und Meningen zu überwinden, relativ stark sein. Deshalb wird er oft als schmerzhaft empfunden. Barker etal. stellten 1985 [3, 4] eine neue magnetische Reiztechnik vor, bei der ein sich rasch änderndes magnetisches Feld intrakraniell einen Reizstrom induziert. Dieser Strom braucht keine anderen Strukturen zu überwinden, um den Kortex zu erreichen. Bei elektrischer Stimulation verlaufen die Stromlinien zwischen den beiden extrakraniell gelegenen Reizpolen, wo sie ihre höchste Dichte haben. Der magnetisch induzierte Reizstrom hat seine höchste Dichte unter den Windungen der zirkulären Flachspule. Er wird nicht durch die Widerstände der Schädelkalotte und der Dura abgeschwächt. Das Risiko einer möglichen Fokussierung der Stromdichte im Hirngewebe durch darüberliegende Areale mit niedrigem Widerstand besteht bei magnetischer Induktion nicht [1]. Der Reiz ist schmerzlos. Von der elektrischen transkraniellen Stimulation ist bekannt, daß bipolare Elektrodenanordnung auf der Kalotte mit einer frontalen Kathode und Anode über dem Motorkortex am wirksamsten ist. Ähnliche Verhältnisse können theoretisch durch die flach aufliegende Reizspule mit über der zu reizenden Hemisphäre in frontookzipitaler Richtung fließendem Strom erreicht werden, da die intrazerebral induzierten Ströme in umgekehrter Richtung fließen (Abb. 12.1). Um den kontralateralen Motorkortex zu reizen, genügt es, die Spule mit der Oberseite nach unten zu drehen [41].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Agnew WF, McCreery DB (1987) Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery 20: 143–147PubMedCrossRefGoogle Scholar
  2. 2.
    Barker AT, Freeston IL, Jalinous R, Jarrett JA (1986) Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of the human brain. Lancet 1:1325–1326PubMedCrossRefGoogle Scholar
  3. 3.
    Barker AT, Freeston IL, Jalinous R, Merton PA, Morton HB (1985) Magnetic stimulation of the human brain. J Physiol (Lond) 369:3PGoogle Scholar
  4. 4.
    Barker AT, Jalinous R (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet II: 1106–1107Google Scholar
  5. 5.
    Benecke R, Meyer BU, Schönle B, Conrad B (1987) Muskelantworten im Hirnnervenbereich nach transkranieller Magnetreizung. 32. Jahrestagung Deutsche EEG-Gesellschaft, Ludwigshafen 1987Google Scholar
  6. 6.
    Berardelli A, Inghilleri M, Formisano R, Accornero N, Manfredi M (1987) Stimulation of motor tracts in motor neuron disease. J Neurol Neurosurg Psychiatry 50:732–737PubMedCrossRefGoogle Scholar
  7. 7.
    Berardelli A, Inghilleri M, Manfredi M, Zamponi A, Cecconi V, Dolce G Cortical and cervical stimulatio.n after hemispheric infarction. J Neurol Neurosurg Psychiatry 50:861–865CrossRefGoogle Scholar
  8. 8.
    Boyd SG, Rothwell JC, Cowan JMA, Webb PJ, MorleyT, Asselman P, Marsden CD (1986) A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49:251–257PubMedCrossRefGoogle Scholar
  9. 9.
    Buchthal F, Behse F (1977) Peroneal muscular atrophy (PMA) and related disorders. I. Clinical manifestations as related to biopsy findings, nerve conduction and electromyography. Brain 100:41–66PubMedCrossRefGoogle Scholar
  10. 9a.
    Claus D (1989) Die transkranielle motorische Stimulation. G Fischer, StuttgartGoogle Scholar
  11. 9b.
    Claus D (1990) Central motor conduction: method and normal results. Muscle & Nerve 13: 1125–1132CrossRefGoogle Scholar
  12. 10.
    Claus D, Waddy HM, Harding AE, Murray NMF, Thomas PK (1990) Central motor conduction in peroneal muscular atrophy and related disorders. Ann Neurol 28: 43–49PubMedCrossRefGoogle Scholar
  13. 11.
    Claus D, Harding AE, Hess CW, Mills KR, Murray NMF, Thomas PK Central motor conduction in degenerative ataxic disorders. A magnetic stimulation study. J Neurol Neurosurg Psychiatry 51:790- 795Google Scholar
  14. 12.
    Claus D, Mills KR, Murray NMF (1988) The influence of vibration on the response to transcranial stimulation of relaxed and voluntarily activated human muscle. J Physiol (Lond) 398:44 (P)Google Scholar
  15. 13.
    Claus D, Mills KR, Murray NMM (1988) The influence of vibration on the excitability of alpha motoneurones. Electroenceph Clin Neurophysiol 69: 431–436PubMedCrossRefGoogle Scholar
  16. 14.
    Claus D, Mills KR, Murray NMM (1988) Facilitation of muscle responses to magnetic brain stimulation by mechanical stimuli in man. Exp Brain Res 71:273–278PubMedCrossRefGoogle Scholar
  17. 15.
    Day BL, Thompson PD, Dick JP, Nakashima K, Marsden CD (1987) Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett 75:101–106PubMedCrossRefGoogle Scholar
  18. 16.
    Dyck JP, Lambert EH (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. II. Neurologic, genetic and electrophysiologic findings in various neuronal degenerations. Arch Neurol 18: 619–625PubMedCrossRefGoogle Scholar
  19. 17.
    Felix D, Wiesendanger M (1971) Pyramidal and non-pyramidal motor cortical effects on distal forelimb muscles of monkeys. Exp Brain Res 12: 81–91PubMedCrossRefGoogle Scholar
  20. 18.
    Harding AE (1981) Early onset cerebellar ataxia with retained reflexes. A clinical and genetic study of a disorder distinct from Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 44:503–508PubMedCrossRefGoogle Scholar
  21. 19.
    Harding AE (1981) Hereditary „pure“ spastic paraplegia: A clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry 44:871–883PubMedCrossRefGoogle Scholar
  22. 20.
    Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155PubMedCrossRefGoogle Scholar
  23. 21.
    Harding AE (1984) The hereditary ataxias and related disorders. Churchill Livingstone, LondonGoogle Scholar
  24. 22.
    Harding AE, Thomas PK (1980) The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103:259–280PubMedCrossRefGoogle Scholar
  25. 23.
    Harding AE, Thomas PK (1984) Peroneal muscular atrophy with pyramidal features. J Neurol Neurosurg Psychiatry 47:168–172PubMedCrossRefGoogle Scholar
  26. 24.
    Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347PubMedCrossRefGoogle Scholar
  27. 25.
    Hess CW, Mills KR, Murray NMF (1986) Measurement of central motor conduction in multiple sclerosis by magnetic brain stimulation. Lancet 16: 355–358CrossRefGoogle Scholar
  28. 26.
    Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: Facilitation of motor responses by voluntary contraction of ipsi- lateral and contralateral muscles with additional observation on an amputee. Neurosci Lett 71:235–240PubMedCrossRefGoogle Scholar
  29. 27.
    Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: The effects of voluntary muscle activity. J Physiol (Lond) 378: 37 PGoogle Scholar
  30. 28.
    Hess CW, Mills KR, Murray NMF (1987) Central motor conduction in hereditary motor and sensory neuropathy (HMSN). Electroenceph Clin Neurophysiol 66:46Google Scholar
  31. 29.
    Hess CW, Mills KR, Murray NMF (1987) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol (Lond) 388: 397–419Google Scholar
  32. 30.
    Hess CW, Mills KR, Murray NMF, Schriefer TN (1987) Magnetic brain stimulation: Central motor conduction studies in multiple sclerosis. Ann Neurol 22:744–752PubMedCrossRefGoogle Scholar
  33. 31.
    Holmes GL, Shaywitz BA (1977) Strumpell’s pure familial spastic paraplegia: Case study and review of the literature. J Neurol Neurosurg Psychiatry 40:1003–1008PubMedCrossRefGoogle Scholar
  34. 32.
    Ingram DA, Swash M (1987) Central motor conduction is abnormal in motor neuron disease. J Neurol Neurosurg Psychiatry 50:159–166PubMedCrossRefGoogle Scholar
  35. 33.
    Landgren S, Phillips CG, Porter R (1962) Minimal synaptic actions of pyramidal impulses on some alpha motoneurones of the baboon’s hand and forearm. J Physiol (Lond) 161:91–111Google Scholar
  36. 34.
    Landgren S, Phillips CG, Porter R (1962) Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon’s hand and forearm. J Physiol (Lond) 161:112–125Google Scholar
  37. 35.
    Matsuda H, Funakoshi K, Nakamura A, Shimazu A (1987) Descending evoked spinal cord potential elicited by stimulating the motor cortex through the skull - intraoperative electrodiagnosis and monitoring. Elec- troenceph Clin Neurophysiol 66: S65Google Scholar
  38. 36.
    Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227PubMedCrossRefGoogle Scholar
  39. 37.
    Merton PA, Morton HB (1986) A magnetic stimulator for the human motor cortex. J Physiol (Lond) 381:10 PGoogle Scholar
  40. 38.
    Mills KR, Murray NMF (1985) Corticospinal tract conduction time in multiple sclerosis. Ann Neurol 18:601–605PubMedCrossRefGoogle Scholar
  41. 39.
    Mills KR, Murray NMF (1986) Electrical stimulation over the human ver- trebral column: Which neural elements are excited? Electroenceph Clin Neurophysiol 63:582–589PubMedCrossRefGoogle Scholar
  42. 40.
    Mills KR, Murray NMF (1986) Neurophysiological evaluation of associated demyelinating peripheral neuropathy and multiple sclerosis: A case report. J Neurol Neurosurg Psychiatry 49:320–323CrossRefGoogle Scholar
  43. 41.
    Mills KR, Murray NMF, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: Physiological mechanisms and clinical applications. Neurosurgery 20:164–168PubMedCrossRefGoogle Scholar
  44. 42.
    Patton HD, Amassian VE (1954) Single- and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363PubMedGoogle Scholar
  45. 43.
    Pelosi L, Caruso G, BaldiP, Milano C, Paolino G, Lotti G (1987) Motor evoked potentials to transcranial electrical stimulation in man: Intraoperative recordings along the spinal cord. Electroenceph Clin Neurophysiol 66: S79Google Scholar
  46. 44.
    Rossini PM, Caramia MD, Zarola F (1987) Mechanisms of nervous propagation along central motor pathways: Noninvasive evaluation in healthy subjects and in patients with neurological disease. Neurosurgery 20: 183–191PubMedCrossRefGoogle Scholar
  47. 45.
    Schriefer TN, Hess CW, Mills KR, Murray NMF (1989) Central motor conduction studies in motor neurone disease using magnetic brain stimulation. Electroenceph Clin Neurophysiol 74:431–437PubMedCrossRefGoogle Scholar
  48. 46.
    Schriefer TN, Mills KR, Murray NMF, Hess CW (1988) Evaluation of proximal facial nerve conduction by transcranial magnetic stimulation. J Neurol Neurosurg Psychiatry 51:60–66PubMedCrossRefGoogle Scholar
  49. 47.
    Schut JW (1950) Hereditary ataxia: Clinical study through six generations. Arch Neurol Psychiatry 63:535–568Google Scholar
  50. 48.
    Snooks J, Swash M (1985) Motor conduction velocity in the human spinal cord: Slowed conduction in multiple sclerosis and radiation myelopathy. J Neurol Neurosurg Psychiatry 48:1135–1139PubMedCrossRefGoogle Scholar
  51. 49.
    Strümpell A (1880) Beiträge zur Pathologie des Rückenmarks. Arch Psy- chiatr Nervenkr 10:676–717CrossRefGoogle Scholar
  52. 50.
    Symonds CP, Blackwood W (1962) Spinal cord compression in hypertrophic neuritis. Brain 85:251–260CrossRefGoogle Scholar
  53. 51.
    Thomas PK, Walker RWH, Rudge P etal. (1987) Chronic demyelinating peripheral neuropathy associated with multifocal central nervous system demyelination. Brain 110:53–76Google Scholar
  54. 52.
    Thompson PD, Day BL, Rothwell JC etal. (1987) The interpretation of electromyographic responses to electrical stimulation of the motor cortex in diseases of the upper motor neurone. J Neurol Sei 80:91–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • D. Claus

There are no affiliations available

Personalised recommendations