Application of Induced Representations of Space Group to Second Order Phase Transitions

  • Robert A. Evarestov
  • Vyacheslav P. Smirnov
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 108)


Group-theoretical methods have proven to be very useful in the analysis of the symmetry changes in solid state continuous (second order) phase transitions [7.1, 2] and have been systematically applied to a large number of systems [7.3]. The Landau theory of continuous phase transitions is the basis of this symmetry analysis [7.1]. Symmetry rules used in the Landau theory are briefly reviewed in the next section.


Brillouin Zone Order Phase Transition Tensor Field Isotropy Subgroup Landau Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    L.D. Landau, E.M. Lifshitz: Statistical Physics, 3rd edn., Part 1 (Pergamon, New York 1980) Chap. XIVGoogle Scholar
  2. 7.2
    H.T. Stokes, D.M. Hatch: Isotropy Subgroups of the 230 Crystallographic Space Groups (World-Scientific, London 1988)MATHGoogle Scholar
  3. 7.3
    J. Kocinski: Commensurate and Incommensurate Phase Transitions (Elsevier, Amsterdam 1990)Google Scholar
  4. 7.4
    D.M. Hatch: Lect. Notes Phys. 201, 390 (1984)ADSCrossRefGoogle Scholar
  5. 7.5
    D.M. Hatch, H.T. Stokes: Phase Transitions 7, 87 (1982)CrossRefGoogle Scholar
  6. 7.6
    J.L. Birman: Phys. Rev. Lett. 17, 1216 (1966)ADSCrossRefGoogle Scholar
  7. 7.7
    D.B. Litvin: J. Math. Phys. 23, 337 (1982)MathSciNetADSCrossRefGoogle Scholar
  8. 7.8
    R.A. Evarestov, V.P. Smirnov: Phys. Status Solidi (b) 152, 633 (1989)ADSCrossRefGoogle Scholar
  9. 7.9
    D.L. Rousseau, R.P. Bauman, S.P.S. Porto: J. Raman Spectrosc. 10,253 (1981)ADSCrossRefGoogle Scholar
  10. 7.10
    K. Ivon, M. Francois: Z. Phys. B — Condensed Matter 76, 413 (1989)ADSCrossRefGoogle Scholar
  11. 7.11
    P. Boni, D.J. Axe, G. Shirane, R.J. Birgeneau, D.R. Gabbe, H.D. Jenssen, M.A. Kastner, C.J. Peters, P.J. Picone, T.R Thurston: Phys. Rev. B 38,185 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Robert A. Evarestov
    • 1
  • Vyacheslav P. Smirnov
    • 2
  1. 1.Department of ChemistrySt. Petersburg University St. PeterhoffSt. PetersburgRussia
  2. 2.Department of Theoretical PhysicsInstitute of Fine Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations