Rheological Materials

  • David Jou
  • José Casas-Vázquez
  • Georgy Lebon


In ordinary incompressible fluids the flow and transport phenomena are fairly well described by Newton’s linear constitutive equation
$$P = pU + {{P}^{v}},$$
$${{P}^{v}} = - 2\eta V;$$
ƞ is the viscosity, which may depend on the temperature and the pressure, but not on the velocity gradients. However, it has been observed that there exists a wide class of materials, such as polymers, soap solutions, some honeys, asphalts, and physiological fluids, that fail to obey the linear Newton law (7.1): these materials are generally referred to as viscoelastic materials. They behave as fluids with a behaviour reminiscent of solids by exhibiting elastic effects. In ordinary fluids, the relaxation of the pressure tensor is very short, in elastic bodies it is infinite so that no relaxation is observed: viscoelastic materials are characterized by relaxation times between these two limits. Materials with the above property are also called non-Newtonian in the technical literature. The terms “visco-elastic” and “non-Newtonian” are used rather loosely; here we shall reserve the term “non-Newtonian” for any material described by a non-linear constitutive relation between the pressure tensor and the velocity gradient tensor, and the term “linear viscoelastic” will be used for systems exhibiting both viscous and elastic effects in the linear regime and described by material coefficients which are independent of the velocity gradient.


Shear Rate Linear Viscoelasticity Pressure Tensor Steady Shearing Flow Gibbs Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1.
    J. Meixner, Z. Naturforsch. 4a (1943) 594; 9a (1954) 654.ADSGoogle Scholar
  2. 7.2.
    G. Kluitenberg, Plasticity and Non-equilibrium Thermodynamics (CISM Course 281),Springer, Wien, 1984; G. Kluitenberg in Non-equilibrium Thermodynamics, Variational Techniques and Stability (R. Donnelly, R. Hermann, and I. Prigogine, eds.), University of Chicago Press, Chicago,1966.Google Scholar
  3. 7.3.
    J. Bataille and J. Kestin, J. Mécanique, 14 (1975) 365.MathSciNetADSMATHGoogle Scholar
  4. 7.4.
    R. S. Rivlin and J. L. Ericksen, J. Rat. Mech. Anal. 4 (1955) 323.MathSciNetMATHGoogle Scholar
  5. 7.5.
    W. Noll, J. Rat. Mech. Anal. 4 (1955) 3.MathSciNetMATHGoogle Scholar
  6. 7.6.
    S. Koh and C. Eringen, Int. J. Engn. Sci. 1 (1963) 199.MathSciNetCrossRefGoogle Scholar
  7. 7.7.
    B. D. Coleman, H. Markowitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids, Springer, New York, 1966.Google Scholar
  8. 7.8.
    R. R. Huilgol and N. Phan-Thien, Int. J. Engn. Sci. 24 (1986) 161.MathSciNetMATHCrossRefGoogle Scholar
  9. 7.9.
    A. Palumbo and G. Valenti, J. Non-Equilib. Thermodyn. 10 (1985) 209; G. Valenti, Physica A 144(1987) 211.ADSMATHCrossRefGoogle Scholar
  10. 7.10.
    M. Lopez de Haro, L. Castillo, and R. Rodríguez, Rheol. Acta 25 (1986) 207.MATHCrossRefGoogle Scholar
  11. 7.11.
    B. C. Eu, J. Chem. Phys. 82 (1985) 4683.MathSciNetADSCrossRefGoogle Scholar
  12. 7.12.
    G. Lebon, C. Pérez-García, and J. Casas-Vázquez, Physica 137 A (1986) 531.CrossRefGoogle Scholar
  13. 7.13.
    G. Lebon, C. Pérez-García, and J. Casas-Vázquez, J. Chem. Phys. 88 (1988) 5068; G. Lebon and J. Casas-Vázquez, Int. J. Thermophys. 9 (1988) 1003.MathSciNetADSCrossRefGoogle Scholar
  14. 7.14.
    G. Lebon and A. Cloot, J. Non-Newtonian Fluid Mech. 28 (1988) 61.MATHCrossRefGoogle Scholar
  15. 7.15.
    P. E. Rouse, J. Chem. Phys. 21 (1953) 1272; B. H. Zimm, J. Chem. Phys. 24 (1956) 269.ADSCrossRefGoogle Scholar
  16. 7.16.
    H. Giesekus, J. Non-Newtonian Fluid Mech. 11 (1982) 69.MATHCrossRefGoogle Scholar
  17. 7.17.
    A. S. Lodge, Elastic Liquids, Academic Press, New York, 1964.Google Scholar
  18. 7.18.
    J. D. Ferry, Viscoelastic Properties of Polymers (3rd edn), Wiley, New York, 1980.Google Scholar
  19. 7.19.
    G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.Google Scholar
  20. 7.20.
    P. J. Carreau, Trans. Soc. Rheol. 16 (1972) 99.CrossRefGoogle Scholar
  21. 7.21.
    J. E. Dunn and R. L. Fosdick, Arch. Rat. Mech. Anal. 56 (1974) 191.MathSciNetMATHCrossRefGoogle Scholar
  22. 7.22.
    W. O. Criminate, J. L. Ericksen, and G. K. Filbey, Arch. Rat. Mech. Anal. 2 (1958) 410.Google Scholar
  23. 7.23.
    A. E. Green and R. S. Rivlin, Arch. Rat. Mech. Anal. 1 (1957) 1.MathSciNetMATHCrossRefGoogle Scholar
  24. 7.24.
    J. G. Oldroyd, Proc. Roy. Soc. London A 245 (1958) 278.MathSciNetADSMATHCrossRefGoogle Scholar
  25. 7.25.
    M. J. Crochet, A. Davies, and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, Amsterdam, 1984.MATHGoogle Scholar
  26. 7.26.
    J. C. Maxwell, Phil. Trans. Roy. Soc. London A 157 (1867) 49.CrossRefGoogle Scholar
  27. 7.27.
    J. Lambermont and G. Lebon, Int. J. Non-linear Mech. 9 (1974) 55.ADSMATHCrossRefGoogle Scholar
  28. 7.28.
    R. F. Rodríguez, M. Lípez de Haro, and O. Manero, Rheol. Acta 27 (1988) 217.MATHCrossRefGoogle Scholar
  29. 7.29.
    G. Lebon in Extended Thermodynamic Systems (P. Salamon and S. Sieniutycz, eds.), Taylor and Francis, New York, 1990.Google Scholar
  30. 7.30.
    R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd edn. Vol. 1: Fluid Mechanics’, R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Vol. 2: Kinetic Theory, Wiley, New York, 1987.Google Scholar
  31. 7.31.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon, Oxford,1986.Google Scholar
  32. 7.32.
    C. Pérez-Garcfa, J. Casas-Vázquez, and G. Lebon, J. Polym. Sci (B. Polym. Phys.) 27 (1989) 1807.ADSCrossRefGoogle Scholar
  33. 7.33.
    H. Metiu and K. Freed, J. Chem. Phys. 67 (1977) 3303.ADSCrossRefGoogle Scholar
  34. 7.34.
    J. Camacho and D. Jou, J. Chem. Phys. 92 (1990) 1339.ADSCrossRefGoogle Scholar
  35. 7.35.
    I. Muller and K. Wilmanski, Rheol. Acta 25 (1986) 335.CrossRefGoogle Scholar
  36. 7.36.
    I. S. Liu and I. Muller, Arch. Rat. Mech. Anal. 83 (1983) 285.MathSciNetMATHCrossRefGoogle Scholar
  37. 7.37.
    H. Tanner, Engineering Rheology, Clarendon, Oxford, 1985.MATHGoogle Scholar
  38. 7.38.
    R. F. Christiansen and W. R. Leppard, Trans. Soc. Rheol. 18 (1974) 65.CrossRefGoogle Scholar
  39. 7.39.
    A. S. Lodge, J. Rheol. 33 (1989) 821.ADSCrossRefGoogle Scholar
  40. 7.40.
    G. Lebon, P. Dauby, A. Palumbo, and G. Valenti, Rheol. Acta 29 (1990) 127.MATHCrossRefGoogle Scholar
  41. 7.41.
    P. C. Dauby and G. Lebon, Appl. Math. Lett. 33 (1990) 45.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • David Jou
    • 1
  • José Casas-Vázquez
    • 1
  • Georgy Lebon
    • 2
  1. 1.Departament de FísicaUniversitat Autònoma de BarcelonaBellaterra, CataloniaSpain
  2. 2.Département de PhysiqueUniversité de LiègeLiègeBelgium

Personalised recommendations