Skip to main content

Abstract

This chapter deals with chemically inert non-viscous mixtures, in which diffusion and electrical conduction may find a place. In normal circumstances, the classical Fick law gives an excellent description of diffusion. However, non-Fickean diffusion has been observed in glasses and polymer solutions; it is shown that the theoretical scheme proposed by EIT is well suited for analysing such non-Fickean features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. L. Frisch, Polym. Engn. Sci. 20 (1980) 1; H. B. Hopfenberg and V. Stannett in The Physics of Glassy Polymers (R. N. Howard, ed.), Appl. Sci. Publish., London, 1973.

    Article  Google Scholar 

  2. M. S. Boukary and G. Lebon, Physica A 137 (1986) 546; R. F. Rodriguez, L. S. Garcia-Colin and M. Lopez de Haro, J. Chem. Phys. 83 (1985) 4099; R. E. Nettleton, J. Phys. A 21 (1988) 1079.

    Article  Google Scholar 

  3. D. Lhuillier, Physica A 165 (1990) 303.

    Google Scholar 

  4. M. A. Schweizer, Can. J. Phys. 63 (1985) 956.

    Article  ADS  Google Scholar 

  5. J. Camacho, Doctoral Thesis, Universitat Autònoma de Barcelona, 1992.

    Google Scholar 

  6. S. Goldstein, Q. J. Mech. Appl. Math. 4 (1951) 129; H. D. Weyman, Am. J. Phys. 35 (1965) 488; M. O. Hongler and L. Streit, Physica A 165 (1990) 196.

    Article  MATH  Google Scholar 

  7. J. Crank, The Mathematics of Diffusion, Clarendon, Oxford, 1975.

    Google Scholar 

  8. H. B. Hopfenberg, R. M. Holley and V. Stannett, Polym. Engn. Sci. 9 (1969) 242; T. K. Kwei and H. M. Zupko, J. Polym. Sci. A2, 7 (1969) 867.

    Article  Google Scholar 

  9. P. Neogi, AIChE J. 29 (1983) 829.

    Article  Google Scholar 

  10. N. L. Thomas and A. H. Windle, Polymer 23 (1982) 529.

    Article  Google Scholar 

  11. C. J. Durning and M. Tabor, Macromolecules 19 (1986) 2220.

    Article  ADS  Google Scholar 

  12. J. Jackie and H. L. Frisch, J. Polym. Sci. (Polym. Phys. Ed) 23 (1985) 675.

    Article  ADS  Google Scholar 

  13. S. Hess, Z. Naturforsch. 32a (1977) 678; C. Pérez-García and D. Jou, J. Phys. A 19 (1986) 2881.

    MathSciNet  ADS  Google Scholar 

  14. H. Mori, Prog. Theor. Phys. 33 (1965) 432; 34 (1965) 399; K. Nagano, T. Karasudani, and H. Mori, Prog. Theor. Phys. 63 (1980) 1904.

    Article  ADS  Google Scholar 

  15. P. Giannozzi, G. Grosso, S. Moroni and G. Pastori-Parravicini, Appl. Num. Math. 4 (1988) 273.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. A. Wolf, Macromolecules 17 (1984) 615; C. Rangel-Nafaile, A. B. Metzner, and K. F. Wissbrun, Macromolecules 17 (1984) 1187; A. Onuki, Phys. Rev. Lett. 62(1989) 2472; P. J. Barham and A. Keller, Macromolecules 23 (1990) 303; M. Criado-Sancho, D. Jou, and J. Casas-Vázquez, Macromolecules 24 (1991) 2834.

    Article  ADS  Google Scholar 

  17. P. Nozières and D. Quemada, Europhys. Lett. 2 (1986) 129.

    Article  ADS  Google Scholar 

  18. J. Kestin, A Course in Thermodynamics (vol I), Blaisdell, New York, 1966.

    Google Scholar 

  19. D. Jou , J. E. Llebot, and J. Casas-Vázquez, Phys. Rev. A 25 (1982) 3277; B. Maruszewski and G. Lebon, J. Tech. Phys. 27 (1986) 63.

    Article  ADS  Google Scholar 

  20. A. N. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973.

    Google Scholar 

  21. M. F. Schlesinger, Ann. Rev. Phys. Chem. 39 (1988) 269.

    Article  ADS  Google Scholar 

  22. A. M. S. Tremblay and F. Vidal, Phys. Rev. B 25 (1982) 7562.

    Article  ADS  Google Scholar 

  23. L. J. de Felice, Introduction to Membrane Noise, Plenum, New York, 1981.

    Book  Google Scholar 

  24. D. Jou, F. Ferrer-Suquet, and C. Pérez-Vicente, J. Chem. Phys. 85 (1986) 5314.

    Article  ADS  Google Scholar 

  25. B. C. Eu and A. S. Wagh, Phys. Rev. B 27 (1983) 1037; A.M.Anile and S.Pennisi, Continuum Mech. Thermodyn. 4 (1992) 187; A.R.Vasconcellos, A.C.Algarte, and R.Luzzi, Physica A 166 (1990) 517

    Article  ADS  Google Scholar 

  26. J. E. Llebot, D. Jou, and J. Casas-Vázquez, Physica A 121 (1983) 552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jou, D., Casas-Vázquez, J., Lebon, G. (1993). Multicomponent Systems. In: Extended Irreversible Thermodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97430-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97430-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55874-3

  • Online ISBN: 978-3-642-97430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics