Advertisement

Radio-Frequency Spectroscopy

  • Sune Svanberg
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 6)

Abstract

Whereas the resolution in optical investigations of free atoms is limited by different broadening mechanisms in the light source and the spectral equipment, resonance methods yield a linewidth which is limited essentially only by the Heisenberg uncertainty relation. For investigations of ground- and meta-stable states two methods, Optical Pumping (OP) and Atomic-Beam Magnetic Resonance (ABMR) can be utilized. In the second method, a spatial deflection of free atoms is used while the first method is an optical resonance method. For studies of short-lived excited states two additional optical precision methods are available: Optical Double Resonance (ODR) and Level Crossing (LC) spectroscopy. Resonance techniques can also be used for investigating liquids and solids. Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR) will be discussed. As the radio-frequency techniques make use of magnetic resonance, a general description of this phenomenon will be given.

Keywords

Nuclear Magnetic Resonance Electron Spin Resonance Atomic Beam Nuclear Magnetic Resonance Signal Radio Astronomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 7.1
    N. Ramsey: Molecular Beams (Clarendon, Oxford 1956, Paperback 1985) J.M. Pendlebury, K.F. Smith: Molecular beams. Contemp. Phys. 28, 3 (1987)Google Scholar
  2. 7.2
    A.N. Nesmeyanov: Vapor Pressure of the Elements (Academic, New York 1963)Google Scholar
  3. 7.3
    R.E. Honig, D.A. Kramen RCA Rev. 30, 285 (1969)Google Scholar
  4. 7.4
    O. Stern, W. Gerlach: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Das magnetische Moment des Silberatoms. Z. Physik 9, 349, 353 (1922)ADSCrossRefGoogle Scholar
  5. 7.5
    I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch: A new method of measuring nuclear magnetic moment. Phys. Rev. 53, 318 (1938)ADSCrossRefGoogle Scholar
  6. 7.6
    N.F. Ramsey: A new molecular beam resonance method. Phys. Rev. 76, 996 (1949); A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695 (1950); Phase shifts in the molecular beam method of separated oscillating fields. Phys. Rev. 84, 506 (1951)ADSCrossRefGoogle Scholar
  7. 7.7
    C. Ekström, I. Lindgren: Atomic beam experiments at the ISOLDE facility at CERN, in Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p.201Google Scholar
  8. 7.8
    WJ. Childs: Case Studies Atomic Phys. 3, 215 (1973)Google Scholar
  9. 7.9
    S. Büttgenbach, G. Meisel, S. Penselin, K.H. Schneider: A new method for the production of atomic beams of highly refractory elements and first atomic beam magnetic resonances in Ta181. Z. Physik 230, 329 (1970) H. Rubinsztein, I. Lindgren, L. Lindström, H. Riedl, A. Rosén: Atomic beam measurements on refractory elements. Nucl. Instr. Meth. 119, 269 (1974).ADSCrossRefGoogle Scholar
  10. 7.10
    U. Brinkmann, J. Goschler, A. Steudel, H. Walther: Experimente mit Erdalkaliatomen in Metastabilen Zuständen. Z. Physik 228, 427 (1969) S. Garpman, G. Lidö, S. Rydberg, S. Svanberg: Lifetimes of some highly excited levels in the Pb-I spectrum measured by the Hanle method. Z. Physik 241, 217 (1971)ADSCrossRefGoogle Scholar
  11. 7.11
    S. Penselin: Recent developments and results of the atomic beam magnetic resonance method, in Progress in Atomic Spectroscopy, Pt.A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p.463Google Scholar
  12. 7.12
    A. Kastler: Quelques suggestions concernant 1a production optique et la détetec-tion optique d’une inégalité de population des niveaux de quantification spatiale des atomes. Application a l’;expérience de Stern et Gerlach et a la résonance magnétique. J. Phys. Radium 11, 255 (1950); Méthodes optiques d’tude de la resonance magnétique. Physica 17, 191 (1951); Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am. 47, 460 (1957)CrossRefGoogle Scholar
  13. 7.13
    H.J. Besch, U. Köpf, E.W. Otten: Optical pumping of shortlived beta emitters. Phys. Lett. 25B, 120 (1967) E.W. Otten: Hyperfine and isotope shift measurements far from stability by optical pumping, in Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p.239ADSGoogle Scholar
  14. 7.14
    J. Bonn, G. Huber, H.J. Kluge, U. Köpf, L. Kugler, E.W. Otten, J. Rodrigues: Orientation of short-lived mercury isotopes by means of optical pumping detected by ß and y radiation, in Atomic Physics 3, ed. by S.J. Smith, G.K. Walters (Plenum, New York 1973) p.471Google Scholar
  15. 7.15
    R. Bernheim: Optical Pumping (Benjamin, New York 1965)Google Scholar
  16. 7.16
    W. Happen Optical pumping. Rev. Mod. Phys. 44, 169 (1972)ADSGoogle Scholar
  17. 7.17
    G.W. Series: Thirty years of optical pumping. Contemp. Phys. 22, 487 (1981)ADSCrossRefGoogle Scholar
  18. 7.18
    M. Arditi, T.R. Carver: Optical detection of zero field hyperfine structure in Na23. Phys. Rev. 109, 1012 (1958); Frequency shift of the zero field hyperfine splitting of Cs133 produced by various buffer gases. Phys. Rev. 112, 449 (1958)ADSCrossRefGoogle Scholar
  19. 7.19
    H.M. Goldenberg, D. Kleppner, N.F. Ramsey: Atomic hydrogen maser. Phys. Rev. Lett. 5, 361 (1960) D. Kleppner, H.M. Goldenberg, N.F. Ramsey: Properties of the hydrogen maser. Appl. Opt. 1, 55 (1962) S.B. Crampton, D. Kleppner, N.F. Ramsey: Hyperfine structure of ground state atomic hydrogen. Phys. Rev. Lett. 11, 338 (1963)ADSCrossRefGoogle Scholar
  20. 7.20
    P. Karpaschoff: Frequency and Time (Academic, London 1978) H. Hellwig: Atomic frequency standards. Proc. IEEE 63, 212 (1974) J. Vanier, C. Audoin: The Quantum Physics of Atomic Frequency Standards (Hilger, Bristol 1989)Google Scholar
  21. 7.21
    F.L. Walls: Frequency standards based on atomic hydrogen. Proc. IEEE 74, 142 (1986) D.J. Wineland: Frequency standards based on stored ions. Proc. IEEE 74, 147 (1986)ADSCrossRefGoogle Scholar
  22. 7.22
    A. Kastler, J. Brossel: La détection de la résonance magnétique des niveaux excités: L’effet de dépolarisation des radiations de résonance optique et de fluorescence. Comp. Rend. 229, 1213 (1949)Google Scholar
  23. 7.23
    J. Brossel, F. Bitten A new “double resonance” method for investigating atomic energy levels. Application to Hg 3P1. Phys. Rev. 86, 308 (1952)ADSCrossRefGoogle Scholar
  24. 7.24
    G. Belin, I. Lindgren, I. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in potassium. Phys. Scr. 12, 287 (1975)ADSCrossRefGoogle Scholar
  25. 7.25
    W. Hanle: Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Physik 30, 93 (1924); Erg. Ex. Naturwiss. 4, 214 (1925)ADSCrossRefGoogle Scholar
  26. 7.26
    F.D. Colgrove, P.A. Franken, R.R. Lewis, R.H. Sands: Novel method of spectroscopy with applications to precision fine structure measurements. Phys. Rev. Lett. 3, 420 (1959)ADSCrossRefGoogle Scholar
  27. 7.27
    G. Breit: Quantum theory of dispersion (continued). Pts.VI and VII. Rev. Mod. Phys. 5, 91 (1933)ADSMATHGoogle Scholar
  28. 7.28
    P. Franken: Interference effects in the resonance fluorescence of “crossed” excited states. Phys. Rev. 121, 508 (1961)ADSCrossRefGoogle Scholar
  29. 7.29
    T.G. Eck, L.L. Foldy, H. Wiedner: Observation of “anticrossings” in optical resonance fluorescence. Phys. Rev. Lett. 10, 239 (1963) H. Wiedner, T.G. Eck: “Anticrossing” signals in resonance fluorescence. Phys. Rev. 153, 103 (1967) H.J. Beyer, H. Kleinpoppen: Anticrossing spectroscopy, in Progress in Atomic Spectroscopy, Pt.A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p.607ADSCrossRefGoogle Scholar
  30. 7.30
    G. Belin, S. Svanberg: Electronic gj factors, natural lifetimes and electric qua-drupole interaction in the np 2P3/2 series of the Rbl spectrum. Phys. Scr. 4, 269 (1971)ADSCrossRefGoogle Scholar
  31. 7.31
    R. Gupta, S. Chang, C. Tai, W. Happen Cascade radio-frequency spectroscopy of excited S and D states of rubidium; anomalous D-state hyperfine structure. Phys. Rev. Lett. 29, 695 (1972) R. Gupta, W. Happer, L. Lam, S. Svanberg: Hyperfine structure measurements of excited S states of the stable isotopes of potassium, rubidium and cesium by cascade radio-frequency spectroscopy. Phys. Rev. A 8, 2792 (1973)ADSCrossRefGoogle Scholar
  32. 7.32
    M.E. Rose, R.L. Carovillano: Coherence effects in resonance fluorescence. Phys. Rev. 122, 1185(1961)ADSCrossRefGoogle Scholar
  33. 7.33
    G. zu Putlitz: Double resonance and level-crossing spectroscopy, in Atomic Physics, ed. by V.W. Hughes, B. Bederson, V.W. Cohen, F.M.J. Pichanick (Plenum, New York 1969)Google Scholar
  34. 7.34
    B. Budick: In Advances in Atomic and Molecular Physics, ed. by R.D. Bates, I. Esterman (Academic, New York 1967)Google Scholar
  35. 7.35
    W. Happer, R. Gupta: Perturbed fluorescence spectroscopy, in Progress in Atomic Spectroscopy, Pt.A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p.391Google Scholar
  36. 7.36
    E. Arimondo, M. Inguscio, P. Violino: Experimental determinations of the hyperfine structure in the alkali atoms. Rev. Mod. Phys. 49, 31 (1977)ADSCrossRefGoogle Scholar
  37. 7.37
    P.R. Johnson, R. Pearson, Jr.: Methods in Experimental Physics, 13, 102 (Academic, New York 1976)Google Scholar
  38. 7.38
    C.P. Slichten Principles of Magnetic Resonance, 3rd. ed., Springer Ser. Solid-State Sci., Vol.1 (Springer, Berlin, Heidelberg 1990)Google Scholar
  39. 7.39
    D.A. Skoog, D.M. West Principles of Instrumental Analysis (Saunders, Philadelphia 1980)Google Scholar
  40. 7.40
    R. Brewer, E.L. Hahn: Atomic memory. Sci. Am. 251/6, 42 (1984)Google Scholar
  41. 7.41
    H. Günther NMR Spectroscopy — An Introduction (Wiley, Chichester 1985)Google Scholar
  42. 7.42
    D.A.R. Williams: Nuclear Magnetic Resonance Spectroscopy (Wiley, Chichester 1986)Google Scholar
  43. 7.43
    W. Kemp: NMR in Chemistry (McMillan, London 1986)Google Scholar
  44. 7.44
    I.L. Pykett NMR imaging in medicine. Sci. Am. 246/5, 54 (1982)CrossRefGoogle Scholar
  45. 7.45
    D.R. Bailes, D.J. Bryant: NMR imaging. Contemp. Phys. 25, 441 (1984)ADSCrossRefGoogle Scholar
  46. 7.46
    R.S. MacKay: Medical Images and Displays: Comparison of Nuclear Magnetic Resonance, Ultrasound, X-Rays and Other Modalities (Wiley, New York 1984)Google Scholar
  47. 7.47
    R.S. Alger Electron Paramagnetic Resonance (Wiley, New York 1968)Google Scholar
  48. 7.48
    J.E. Wertr Electron Spin Resonance: Elementary Theory and Practical Applications (Chapman and Hall, New York 1986)Google Scholar
  49. 7.49
    J.J. Davies: Optically detected magnetic resonance and its applications. Con-temp. Phys. 17, 275 (1976)ADSGoogle Scholar
  50. 7.50
    C.H. Townes, A.L. Schawlow: Microwave Spectroscopy (Dover, New York 1975)Google Scholar
  51. 7.51
    H.W. Kroto: Molecular Rotation Spectra (Wiley, London 1975)Google Scholar
  52. 7.52
    W. Gordy, R.L. Cook: Microwave Molecular Spectra, 3rd. ed., Techniques of Chemistry, Vol.XVIII (Wiley, New York 1984)Google Scholar
  53. 7.53
    T. Lund (ed.): Surveillance of environmental pollution and resources by electromagnetic waves. NATO Adv. St. Inst. Ser. (Reidel, Dordrecht 1978)Google Scholar
  54. 7.54
    E. Schanda: Physical Fundamentals of Remote Sensing (Springer, Berlin, Heidelberg 1986)Google Scholar
  55. 7.55
    D.T. Gjessing: Remote surveillance by electromagnetic waves for air — water — land (Ann Arbor Science, Ann Arbor 1978)7.56 K.A. Browning: Uses of radar in metrology. Contemp. Phys. 27, 499 (1986)CrossRefGoogle Scholar
  56. 7.57
    E. Schanda: Microwave radiometry applications to remote sensing, in [7.53]Google Scholar
  57. 7.58
    E.P.W. Attema: The radar signature of natural surfaces and its application in active microwave remote sensing, in [7.53]Google Scholar
  58. 7.59
    Ch. Elachi: Radar images of the Earth from space. Sci. Am. 247/6, 46 (1982)CrossRefGoogle Scholar
  59. 7.60
    O.E.H. Rydbeck: Interstellar molecules, in Kosmos 1974, ed. by N.R. Nilsson (Swedish Phys. Soc, Stokholm 1975)Google Scholar
  60. 7.61
    W.M. Irvine, P.F. Goldsmith, A. Hjalmarsson: Chemical abundances in molecular clouds, in Interstellar Processes, ed. by D.J. Hollenback, H.A. Thronson Jr. (Reidel, Dordrecht 1987)Google Scholar
  61. 7.62
    K. Rohlfs: Tools of Radio Astronomy (Springer, Berlin, Heidelberg 1986)Google Scholar
  62. 7.63
    A.S. Webster, M.S. Longair: Millimetre and sub-millimetre astronomy. Contemp. Phys. 25, 519(1984)ADSCrossRefGoogle Scholar
  63. 7.64
    A.C.S. Readhead: Radio astronomy and very long baseline interferometry. Sci. Am. 246/6, 38 (1982)ADSCrossRefGoogle Scholar
  64. 7.65
    A.R. Thompson, J. Moran, G.W. Swenson, Jr.: Interferometry and Synthesis in Radio Astronomy (Wiley, New York 1986)Google Scholar
  65. 7.66
    M. Elitzur: Physical characteristics of astronomical masers. Rev. Mod. Phys. 54, 1225 (1982) D.F. Dickinson: Cosmic masers. Sci. Am. 238/6, 68 (1978)ADSCrossRefGoogle Scholar
  66. 7.67
    P. Morrison, J. Billingham, J. Wolfe: The Search for Extraterrestial Intelligence (prepared by NASA) (Dover, New York 1979; Academic, New York 1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Sune Svanberg
    • 1
  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations