Advertisement

Laser-Spectroscopic Applications

  • Sune Svanberg
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 6)

Abstract

In the previous chapter we have seen how tunable lasers can be used in a multitude of ways to gain basic information on atomic and molecular systems. Thus, the laser has had a considerable impact on basic research, and its utility within the applied spectroscopic field is not smaller. We shall here discuss some applications of considerable interest. Previously, we have mainly chosen atomic spectroscopic examples rather than molecular ones, but in this chapter we shall mainly discuss applied molecular spectroscopy. First we will describe diagnostics of combustion processes and then discuss atmospheric monitoring by laser techniques. Different aspects of laser-induced fluorescence in liquids and solids will be considered with examples from the environmental, industrial and medical fields. We will also describe laser-induced chemical processes and isotope separation with lasers. Finally, spectroscopic aspects of lasers in medicine will be discussed. Applied aspects of laser spectroscopy have been covered in [10.1,2].

Keywords

Isotope Separation Laser Technique Lidar Signal Uranium Hexafluoride Laser Isotope Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10.1
    L.J. Radziemski, R.W. Solarz, J.A. Paisner (eds.): Laser Spectroscopy and its Applications (Dekker, New York 1987)Google Scholar
  2. 10.2
    H. Medin, S. Svanberg (eds.): Laser Technology in Chemistry, Special issue. Appl. Phys. B46, No.3 (1988)Google Scholar
  3. 10.3
    W.C. Gardiner, Jr.: The chemistry of flames. Sci. Am. 246/2, 86 (1982) W.C. Gardiner, Jr. (ed.): Combustion Chemistry (Springer, Berlin, Heidelberg 1984) J. Walken The physics and chemistry underlying the infinite charm of a candle flame. Sci. Am. 238/4, 154 (1978)Google Scholar
  4. 10.4
    M. Gehring, K. Hoyermann, H. Schacke, J. Wolf rum: Direct studies of some elementary steps for the formation and destruction of nitric oxide in the H-N-O system. 14th Symp. on Combustion (Combustion Institute, Pittsburgh, PA 1973)Google Scholar
  5. 10.5
    A. G. Gaydon, H. G. Wolfhard: Flames, their Structure, Radiation and Temperature (Chapman and Hall, New York 1979)Google Scholar
  6. 10.6
    J. Wolfrum: Chemical kinetics in combustion systems: The specific effect of energy, collisions, and transport processes. 20th Symp. on Combustion (Combustion Institute, Pittsburgh, PA 1985)Google Scholar
  7. 10.7
    A. C. Gaydon: The Spectroscopy of Flames (Chapman and Hall, New York 1974)Google Scholar
  8. 10.8
    D.R. Crosley (ed.): Laser Probes for Combustion Chemistry, ACS Symp. Ser. Vol.134 (Am. Chem. Soc, Washington 1980)Google Scholar
  9. 10.9
    A.C. Eckbreth, P.A. Bonczyk, J.F. Verdiek: Combustion Diagnostics by Laser Raman and Fluorescence Techniques, Progr. Energy Comb. Sci. 5, 253 (1979).CrossRefGoogle Scholar
  10. 10.10
    J.H. Bechtel, C.J. Dasch, R.E. Teets: Combustion research with lasers, in Laser Applications, ed. by R.K. Erf, J.F. Ready (Academic, New York 1984) J.H. Bechtel, A.R. Chraplyvy: Proc. IEEE 70, 658 (1982)Google Scholar
  11. 10.11
    T.D. McCay, J.A. Roux (eds.): Combustion diagnostics by nonintrusive methods. Progr. Astronautics and Aeronautics, Vol. 92 (1983)Google Scholar
  12. 10.12
    A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Turnbridge Wells 1987)Google Scholar
  13. 10.13
    K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi (eds.): Laser Diagnostics and Modelling of Combustion (Springer, Berlin, Heidelberg 1987)Google Scholar
  14. 10.14
    M. Aldén, H. Edner, S. Svanberg, T. Högberg: Combustion studies with laser techniques, Göteborg Institute of Physics Reports GIPR-206 (Chalmers University of Technology, Göteborg 1980)Google Scholar
  15. 10.15
    M. Aldén, H. Edner, G. Holmstedt, T. Högberg, H. Lundberg, S. Svanberg: Relative distribution of radicals and temperature in flat flames, studied by laser-induced fluorescence and BOXCARS spectroscopy. Lund Reports on Atomic Physics LRAP-1 (Lund Institute of Technology, Lund 1981)Google Scholar
  16. 10.16
    D.R. Crosley, G.P. Smith: Laser-induced fluorescence spectroscopy for combustion diagnostics. Opt. Eng. 22, 545 (1983) K. Schofield, M. Steinberg: Quantitative atomic and molecular fluorescence in the study of detailed combustion processes. Opt. Eng. 20, 501 (1981)Google Scholar
  17. 10.17
    R. Lucht Applications of laser-induced fluorescence spectroscopy for combustion and plasma diagnostics, in [Ref. 10.1, p.623]Google Scholar
  18. 10.18
    N.S. Bergano, P.A. Janimaagi, M.M. Salour, J.H. Bechtel: Picosecond laser-spectroscopy measurement of hydroxyl fluorescence lifetime in flames. Opt. Lett.8, 443 (1983)ADSCrossRefGoogle Scholar
  19. 10.19
    M. Aldén, H. Edner, P. Grafström, H.M. Hertz, G. Hoimstedt, T. Högberg, H. Lundberg, S. Svanberg, S. Wallin, W. Wendt, U. Westblom: Imaging measurements of species concentrations, temperatures and velocities in reactive flows using laser-induced fluorescence, in Lasers 86, ed. by K.M. Corcoran, D.M. Sullivan, W.C. Stwalley (STS Press, McLean, VA. 1985) p.209Google Scholar
  20. 10.20
    M. Aldén, H. Edner, G. Hoimstedt, S. Svanberg, T. Högberg: Single-pulse laser-induced OH fluorescence in an atmospheric flame, spatially resolved with a diode array detector. Appl. Opt. 21, 1236 (1982)ADSCrossRefGoogle Scholar
  21. 10.21
    MJ. Dyer, D.R. Crosley: Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 7, 382 (1982) G. Kychakoff, R.D. Howe, R.K. Hanson, J.C. McDaniel: Quantitative visualization of combustion species in a plane. Appl. Opt. 21, 3225 (1982) G. Kychakoff, R.D. Howe, R.K. Hanson: Quantitative flow visualization technique for measurements in combustion gases. Appl. Opt. 23, 704 (1984) G. Kychakoff, K. Knapp, R.D. Howe, R.K. Hanson: Flow visualization in combustion gases using nitric oxide fluorescence. AIAA J. 22, 153 (1984) G. Kychakoff, R.D. Howe, R.K. Hanson, M.C. Drake, R.W. Pitz, M. Lapp, C.M. Penney: Visualization of turbulent flame fronts with planar laser-induced fluorescence. Science 224, 382 (1984) R.K. Hanson: Combustion diagnostics: Planar imaging techniques, in Proc. 21st Symp. on Combustion, Munich 1986 (The Combustion Institute Pittsburgh, PA 1986) B. Hiller, R.K. Hanson: Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Appl. Opt. 27, 33 (1988) C. Véret (ed.): Flow Visualization IV (Springer, Berlin, Heidelberg 1987)Google Scholar
  22. 10.22
    M. Aldén, H. Edner, P. Grafström, S. Svanberg: Two-photon excitation of atomic oxygen in a flame. Opt. Commun. 42, 244 (1982) M. Aldén, H.M. Hertz, S. Svanberg, S. Wallin: Imaging laser-induced fluorescence of oxygen atoms in a flame. Appl. Opt. 23, 3255 (1984)Google Scholar
  23. 10.23
    R.P. Lucht, J.P. Salmon, G.B. King, D.W. Sweeney, N.M. Laurendeau: Two-photon-excited fluorescence measurement of hydrogen atoms in flames. Opt. Lett. 8, 365 (1983)ADSCrossRefGoogle Scholar
  24. 10.24
    M. Aldén, A.L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang: Three-photon excited fluorescence detection of atomic hydrogen in an atmospheric pressure flame. Opt. Lett. 9, 211 (1984)ADSCrossRefGoogle Scholar
  25. 10.25
    J.E.M. Goldsmith: Two-step saturated fluorescence detection of atomic hydrogen in flames. Opt. Lett. 10, 116 (1985) J.E.M. Goldsmith, R.J.M. Anderson: Imaging of atomic hydrogen in flames with two-step saturated fluorescence detection. Opt. Lett. 11, 67 (1985)ADSCrossRefGoogle Scholar
  26. 10.26
    M. Aldén, S. Wallin, W. Wendt: Applications of two-photon absorption for detection of CO in combustion gases. Appl. Phys. B33, 205 (1984)ADSGoogle Scholar
  27. 10.27
    J.E.M. Goldsmith: Resonant multiphoton optogalvanic detection of atomic hydrogen in flames. Opt. Lett. 7, 437 (1982) J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionization techniques, in [Ref. 10.28, p.337] P.J.H. Tjossem, T.A. Cool: Chem. Phys. Lett. 100, 479 (1983)ADSCrossRefGoogle Scholar
  28. 10.28
    W. Persson, S. Svanberg (eds.): Laser Spectroscopy VIII, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987)Google Scholar
  29. 10.29
    K. Tennal, G.J. Salomo, R. Gupta: Minority species concentration measurements in flames by the photoacoustic technique. Appl. Opt. 21, 2133 (1982) A.C. Tarn: Applications of photoacoustic sensing techniques. Revs. Mod. Phys. 58, 381 (1986)ADSCrossRefGoogle Scholar
  30. 10.30
    R.K. Hanson, P.A. Kuntz, C.H. Kruger. High-resolution spectroscopy of combustion gases using a tunable IR diode laser. Appl. Opt. 16, 2045 (1975) K. Knapp, R.K. Hanson: Spatially resolved tunable diode-laser absorption measurements of CO using optical Stark shifting. Appl. Opt. 22, 1980 (1983)ADSCrossRefGoogle Scholar
  31. 10.31
    Special Issue on Computerized Tomography. Proc. IEEE 71, 291–435 (March 1983) Special Issue on Industrial Applications of Computed Tomography and NMR Imaging. Appl. Opt. 24, 23 (1985)CrossRefGoogle Scholar
  32. 10.32
    K.E. Bennett, G.W. Faris, R.L. Byer: Experimental optical fan beam tomography. Appl. Opt. 23, 2678 (1984)ADSCrossRefGoogle Scholar
  33. 10.33
    H.M. Hertz, G.W. Faris: Emission tomography of flame radicals. Opt. Lett. 13, 351 (1988)ADSCrossRefGoogle Scholar
  34. 10.34
    H.M. Hertr Experimental determination of 2-D flame temperature fields by interferometric tomography. Opt. Commun. 54, 131 (1985)ADSCrossRefGoogle Scholar
  35. 10.35
    A. Rose, G.J. Salamo, R. Gupta: Photoacoustic deflection spectroscopy: A new specie-specific method for combustion diagnostics. Appl. Opt. 23, 781 (1984) H. Sonntag, A.C. Tarn: Time-resolved flow-velocity and concentration measurements using a travelling thermal lens. Opt. Lett. 10, 436 (1985) G.W. Faris, R.L. Byen Beam-deflection optical tomography. Opt. Lett. 12, 72 (1987) G.W. Faris, R.L. Byen Beam-deflection optical tomography of a flame. Opt. Lett. 12, 155 (1987)ADSCrossRefGoogle Scholar
  36. 10.36
    M. Lapp, C.M. Penney: Raman measurements on flames, in Advances in Infrared and Raman Spectroscopy, ed. by R.J.H. Clark, R.E. Hester (Heyden, London 1977)Google Scholar
  37. 10.37
    R.W. Dibble, A.R. Masri, R.W. Bilgen Combust. Flame 67, 189 (1987) J.J. Valentini: Laser Raman techniques, in [Ref. 10.1, p.507]CrossRefGoogle Scholar
  38. 10.38
    M. Aldén, H. Edner, S. Svanberg: Coherent anti-Stokes Raman spectroscopy (CARS) applied in combustion probing. Phys. Scripta 27, 29 (1983)ADSCrossRefGoogle Scholar
  39. 10.39
    D. Klick, K.A. Marko, L. Rimai: Broadband single-shot CARS spectra in a fired internal combustion engine. Appl. Opt. 20, 1178 (1981) G.C. Alessandretti, P. Violino: Thermometry by CARS in an automobile engine. J. Phys. D 16, 1583 (1983)ADSCrossRefGoogle Scholar
  40. 10.40
    L.A. Rahn, S.S. Johnston, R.L. Farrow, P.L. Mattern: CARS thermometry in an internal combustion engine, in Temperature, Vol.5, ed. by J.F. Schooley (AIP, New York 1982)Google Scholar
  41. 10.41
    M. Aldén, S. Wallin: CARS Experiment in a full-scale (10×10m2) industrial coal furnace. Appl. Opt. 24, 3434 (1985)ADSCrossRefGoogle Scholar
  42. 10.42
    B. Attal, M. Pealat, J.P. Taran: J. Energy 4, 135 (1980)CrossRefGoogle Scholar
  43. 10.43
    A. C. Eckbreth: CARS thermometry in practical combustors. Combust. Flame 39, 133 (1980)ADSCrossRefGoogle Scholar
  44. 10.44
    A.C. Eckbreth, P.W. Schreiber: Coherent anti-Stokes Raman spectroscopy (CARS): Applications to combustion and gas-phase diagnostics, in Chemical Applications of Non-Linear Raman Spectroscopy, ed. by A.B. Harvey (Academic, New York 1981) R.J. Hall, A.C. Eckbreth: Coherent anti-Stokes Raman spectroscopy (CARS): Application to combustion diagnostics, in Laser Applications, ed. by J.F. Ready, R.K. Erf (Academic, New York 1984) Vol.5Google Scholar
  45. 10.45
    H. Haragushi, B. Smith, S. Weeks, D.J. Johnson, J.D. Wineforder: Measurement of small volume flame temperature by the two-line atomic fluorescence method. Appl. Spectr. 31, 156 (1977) R.G. Jolik, J.W. Daily: Two-line atomic fluorescence temperature measurements in flames: An experimental study. Appl. Opt. 21, 4158 (1982) M. Aldén, P. Grafström, H. Lundberg, S. Svanberg: Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection. Opt. Lett. 8, 241 (1983)ADSCrossRefGoogle Scholar
  46. 10.46
    J. Pender, L. Hesselink: Phase conjugation in a flame. Opt. Lett. 10, 264 (1985) P. Ewart, S.V. O’Leary: Detection of OH in a flame by degenerate four-wave mixing. Opt. Lett. 11, 279 (1986)ADSCrossRefGoogle Scholar
  47. 10.47
    R.M. Osgood, S.R.J. Brueck, H.R. Schlossberg (eds.): Laser Diagnostics and Photochemical Processing for Semiconductor Devices (North Holland, Amsterdam 1983) D. Bäuerle (ed.): Laser Processing and Diagnostics, Springer Ser. Chem. Phys., Vol.39 (Springer, Berlin, Heidelberg 1984) D. Bäuerle, K.L. Kompa, L.D. Laudé (eds): Laser Processing and Diagnostics II (Physique, Les Ulis 1986) D. Bäuerle: Laser Processing and Chemistry, 2nd edn. (Springer, Berlin, Heidelberg 1996) L.D. Laudé, D. Bäuerle, M. Wautelet (eds): Interfaces under Laser Irradiation, NATO ASI Series (Nijholl, Dordrecht 1987) W.G. Breiland, M.E. Coltrin, P. Ho (eds): Laser-Based Studies of Chemical Vapor Deposition, Proc. Soc. Photo-opt. Instrum. Eng. 385, 146 (1983)Google Scholar
  48. 10.48
    K.L. Kompa, J. Wannen Laser Applications in Chemistry (Plenum, New York 1984) V.S. Letokhov (ed.): Laser Analytical Spectrochemistry (Hilger, Bristol 1986) T.R. Evans (ed.): Applications of Lasers to Chemical Problems (Wiley, New York 1982) S. Svanberg: Laser spectroscopy applied to energy, environmental and medical research. Phys. Scr. T 23, 281 (1988); Appl. Phys. B 46, 271 (1988)CrossRefGoogle Scholar
  49. 10.49
    E.R. Pike, H.Z. Cummins (eds.): Photon Correlation and Light Beating Spectroscopy (Plenum, New York 1974)Google Scholar
  50. 10.50
    L.E. Drain: The Laser Doppler Technique (Wiley, Chichester 1980)Google Scholar
  51. 10.51
    E. Durst, A. Melling, J.H. Whitelaw: Principles and Practice of Laser-Doppler Anemometry, 2nd edn. (Academic, London 1981)Google Scholar
  52. 10.52
    C.J. Dasch, J.A. Sell: Velocimetry in laminar and turbulent flows using the photothermal deflection effect with a transient grating. Opt. Lett. 11, 603 (1986), and references therein R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, G. Rüssel: Velocity measurements by vibrational tagging and fluorescent probing of oxygen. Opt. Lett. 12, 861 (1987)ADSCrossRefGoogle Scholar
  53. 10.53
    B. Hiller, J.C. McDaniel, E.C. Rea, Jr., R.K. Hanson: Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows. Opt. Lett. 8, 474 (1983)ADSCrossRefGoogle Scholar
  54. 10.54
    U. Westblom, S. Svanberg: Imaging measurements of flow velocitites using laser-induced fluorescence. Phys. Scripta 31, 402 (1985) U. Westblom, A. Aldén: Spatially resolved flow velocity measurement using laser-induced fluorescence from a pulsed laser. Opt. Lett. 14, 9 (1989)Google Scholar
  55. 10.55
    E.J. McCartney: Absorption and Emission by Atmospheric Gases (Wiley, New York 1983)Google Scholar
  56. 10.56
    E.J. McCartney: Optics of the Atmosphere; Scattering bv Molecules and Particles (Wiley, New York 1976)Google Scholar
  57. 10.57
    L.S. Rothman et al.: AFGL atmospheric absorption line parameters compilation: 1982 Version. Appl. Opt. 22, 2247 (1983) L.S. Rothman et al: The HITRAN database: 1986 Edition. Appl. Opt. 26, 4058 (1987)Google Scholar
  58. 10.58
    W. Bach, J. Pankrath, W. Kellogg (eds): Man’s Impact on Climate (Elsevier, Amsterdam 1979)Google Scholar
  59. 10.59
    R. Revelle: Carbon dioxide and world climate. Sci. Am. 247/2, 33 (1982) S.H. Schneiden Climate modeling. Sci. Am. 256/5, 72 (1987) R.A. Houghton, G.W. Woodwell: Global climatic change. Sci. Am. 260/4, 18 (1989) S.H. Schneiden The changing climate. Sci. Am. 261/3, 38 (1989) B.J. Mason: The greenhouse effect. Contemp. Phys. 30, 417 (1989)Google Scholar
  60. 10.60
    T.E. Graedel, D.T. Hawkins, L.D. Claxton: Atmospheric Chemical Compounds: Sources, Occurrence, Bioassay (Academic, Orlando 1986)Google Scholar
  61. 10.61
    R.M. Harrison, R. Perry (eds.): Handbook of Air Pollution Analysis, 2nd edn. (Chapman and Hall, London 1986)Google Scholar
  62. 10.62
    R.P. Wayne: Chemistry of Atmospheres (Clarendon, Oxford 1985)Google Scholar
  63. 10.63
    J.H. Seinfeld: Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York 1986)Google Scholar
  64. 10.64
    D.A. Killinger, A. Mooradian (eds.): Optical and Laser Remote Sensing, Springer Ser. Opt. Sci., Vol.39 (Springer, Berlin, Heidelberg 1983)Google Scholar
  65. 10.65
    R.M. Measures: Laser Remote Sensing; Fundamentals and Applications (Wiley, New York 1984)Google Scholar
  66. 10.66
    E.D. Hinkley (ed.): Laser Monitoring of the Atmosphere, Topics Appl. Phys., Vol.14 (Springer, Berlin, Heidelberg 1976)Google Scholar
  67. 10.67
    V. Zuev, I. Naats: Inverse Problems of Lidar Sensing of the Atmosphere, Springer Ser. Opt. Sci., Vol.29 (Springer, Berlin, Heidelberg 1983)Google Scholar
  68. 10.68
    R.M. Measures: In Analytical Laser Spectroscopy, ed. by N. Omenetto (Wiley, New York 1979) D.K. Killinger, N. Menyuk: Laser remote sensing of the atmosphere. Science 235, 37 (1987) W.B. Grant Laser remote sensing techniques, in [Ref. 10.1, p.565] T. Kobayashi: Techniques for laser remote sensing of the environment. Rem. Sens. Rev. 3, 1 (1987) R.M. Measures (ed.): Laser Remote Chemical Analysis (Wiley-Interscience, New York 1988) E. Zanzottera: Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere. Crit. Rev. Anal. Chem. 21, 279(1990) S. Svanberg: Environmental monitoring using optical techniques, in Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York 1990)Google Scholar
  69. 10.69
    S. Svanberg: Lasers as probes for air and sea. Contemp. Phys. 21, 541 (1980)ADSCrossRefGoogle Scholar
  70. 10.70
    S. Svanberg: Fundamentals of atmospheric spectroscopy, in Surveillance of Environmental Pollution and Resources by Electromagnetic Waves, ed. by T. Lund (Reidel, Dordrecht 1978)Google Scholar
  71. 10.71
    R.T. Menzies, R.K. Seals, Jr.: Science 197, 1275 (1977)ADSCrossRefGoogle Scholar
  72. 10.72
    E.D. Hinkley: Laser spectroscopic instrumentation and techniques: Long path monitoring by resonance absorption. Opt. Quant. Electr. 8, 155 (1976)CrossRefGoogle Scholar
  73. 10.73
    M.C. Alarcon, H. Ito, H. Inaba: All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fibre link and an InGaAsP light emitting diode in the near-infrared region. Appl. Phys. B 43, 79 (1987)CrossRefGoogle Scholar
  74. 10.74
    M.L. Chanin: Rayleigh and resonance sounding of the stratosphere and mesosphere, in [Ref. 10.64, p. 192] C. Grander, G. Megie: Daytime lidar measurement of the mesospheric sodium layer. Planet Space Sci. 30, 169 (1982) C. Granier, J.P. Jegou, G. Megie: Resonant lidar detection of Ca and Ca+ in the upper atmosphere. Geophys. Res. Lett. 12, 655 (1985) K.H. Fricke, U. v. Zahn: Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar. J. Atm. Terr. Phys. 47, 499 (1985) U. von Zahn, P. von der Gathen, G. Hansen: Forced release of sodium from upper atmosphere dust particles. Geophys. Res. Lett. 14, 76 (1987) L.A. Thompson, C.S. Gardner: Laser guidestar experiment at Mauna Kea Ober-vatory for adaptive imaging in astronomy. Nature 328, 229 (1987)Google Scholar
  75. 10.75
    L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman: Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 55, 1246 (1983) J.A. Millard, R.H. Dalling, L.J. Radziemski: Time-resolved laser-induced breakdown spectrometry for the rapid determination of beryllium in beryllium-copper alloys. Appl. Spectr. 40, 491 (1986) D.J. Cremers, L.J. Radziemski: Laser plasmas for chemical analysis, in [Ref. 10.1, p. 351]Google Scholar
  76. 10.76
    K. Fredriksson, B. Galle, K. Nyström, S. Svanberg: Mobile lidar system for environmental probing. Appl. Opt. 20, 4181 (1981)ADSCrossRefGoogle Scholar
  77. 10.77
    K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull: Measurements of the emission from industrial smoke stacks using laser radar techniques. Göteborg Institute of Physics Reports GIPR-121 (CTH, Göteborg 1976)Google Scholar
  78. 10.78
    H. Edner, K. Fredriksson. A. Sunesson, S. Svanberg, L. Unéus, W. Wendt Mobile remote sensing system for atmospheric monitoring. Appl. Opt. 26, 4330 (1987)ADSCrossRefGoogle Scholar
  79. 10.79
    D.J. Brassington: Measurement of the SO2 absorption spectrum between 297 and 316 nm using a tunable dye laser. Lab. Note No. RD/L/N184/79 (Central Electricity Res. Labs., Leatherhead 1979) D.J. Brassington: Sulphur dioxide absorption cross section measurement from 290 nm to 317 nm. Appl. Opt. 20, 3774 (1981)Google Scholar
  80. 10.80
    J. Pelon, G. Megie: Ozone monitoring in the troposphere and lower stratosphere: Evaluation and operation of a ground based lidar station. J. Geophys. Res. 87, 4947 (1982) G.J. Megie, G. Ancellet, J. Pelon: Lidar measurements of ozone vertical profiles. Appl. Opt. 24, 3454 (1985) O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe: Differential absorption-lidar measurement of tropospheric ozone with excimer-Raman hybrid laser. Opt. Lett. 8, 347 (1983) O. Uchino, M. Maeda, H. Yamamura, M. Hirono: Observation of stratospheric vertical ozone distribution by a XeCl lidar. J. Geophys. Res. 88, 5273 (1983) J. Werner, K.W. Rothe, H. Walther: Monitoring of the stratospheric ozone layer by laser radar. Appl. Phys. B32, 113 (1983)ADSCrossRefGoogle Scholar
  81. 10.81
    M.P. McCormick: Lidar measurements of Mount St. Helens effluents. Opt. Eng. 21, 340 (1982) M.P. Mc Cormick, T.J. Swisser, W.H. Fuller. W.H. Hunt, MT. Osborn: Airborne and groundbased lidar measurements of the El Chichon stratospheric aerosol from 90° N to 56° S. Geofisica Internacional 23–2, 187 (1984) M.R. Rampino, S. Self: The atmospheric effects of El Chichon. Sci. Am. 250/1, 34(1984) E.E. Uthe: Application of surface based and airborne lidar systems for environmental monitoring. J. Air Pollut. Control Assoc. 33, 1149 (1983)ADSGoogle Scholar
  82. 10.82
    R.L. Byer, E.K. Gustaf son, R. Trebino (eds.): Tunable Solid State Lasers for Remote Sensing, Springer Ser. Opt. Sci., Vol.51 (Springer, Berlin, Heidelberg 1985)Google Scholar
  83. 10.83
    D.H. Hercules (ed.): Fluorescence and Phosphorescence Analysis (Interscience, New York 1966) P. Pringsheim: Fluorescence and Phosphorescence (Interscience, New York 1949)Google Scholar
  84. 10.84
    J.B. Birks: Photophysics of Aromatic Molecules (Wiley, New York 1970)Google Scholar
  85. 10.85
    I. Berlman: Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd edn. (Academic, New York 1971)Google Scholar
  86. 10.86
    J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Plenum, New York 1983) EX. Wehry (ed.): Modern Fluorescence Spectroscopy, Vois. 1 and 2 (Plenum, New York 1976)Google Scholar
  87. 10.87
    L. Celander, K. Fredriksson, B. Galle, S. Svanberg: Investigation of laser-induced fluorescence with application to remote sensing of environmental parameters. Göteborg Institute of Physics Reports GIPR-149 (CTH, Göteborg 1978)Google Scholar
  88. 10.88
    S. Svanberg: Environmental diagnostics, in Trends in Physics, ed. by M.M. Woolfson (Hilger, Bristol 1978) p. 119Google Scholar
  89. 10.89
    Govindjee, R. Govindjee: The absorption of light in photosynthesis. Sci. Am. 231/6, 68 (1974) D.C. Youvan, B.L. Marrs: Molecular mechanisms of photosynthesis. Sei. Am. 256/6, 42 (1987) H.K. Lichtenthaler, U. Rinderle: The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem. 19, Suppl. 1, S29-85 (1988) F.E. Hoge, R.N. Swift Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occuring pigments. Appl. Opt. 20, 3197 (1981) F.E. Hoge, R.N. Swift, J.K. Yungel: Active-passive airborne ocean color measurement 2: Applications. Appi. Opt. 25, 48 (1986)Google Scholar
  90. 10.90
    R.A. O’Neill, L. Buja-Bijunas, D.M. Rayner: Field performance of a laser fluo-rosensor for the detection of oil spills. Appl. Opt. 19, 863 (1980) G.A. Capelle, L.A. Franks, D.A. Jessup: Aerial testing of a KrF laser-based fluorosensor. Appl. Opt. 22, 3382 (1983)Google Scholar
  91. 10.91
    H.H. Kim: Airborne laser bathymetry. Appl. Opt. 16, 45 (1977) J. Banic, S. Sizgoric, R. O’Neill: Airborne scanning lidar bathymeter measures water depth. Laser Focus 23/2, 40 (1987) K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström: Underwater laser-radar experiments for bathymetry and fish-school detection. Göteborg Institute of Physics Reports GIPR-162 (CTH, Göteborg 1978)Google Scholar
  92. 10.92
    S. MontOán, S. Svanberg: A system for industrial surface monitoring utilizing laser-induced fluorescence. Appl. Phys. B38, 241 (1985)ADSGoogle Scholar
  93. 10.93
    S. Montän, S. Svanberg: Industrial applications of laser-induced fluorescence. L.I.A. ICALEO 47, 153 (1985) P.S. Andersson, S. Montän, S. Svanberg: Remote sample characterization based on fluorescence monitoring. Appl. Phys. B44, 19 (1987)Google Scholar
  94. 10.94
    E.S. Yeung: In Adv. Chromatography 23, Chap. 1 (Dekker, New York 1984) E.S. Yeung: In Microcolumn Separations: Columns, Instrumentation and Ancillary Techniques, ed. by M.V. Novotny, D. Ishii (Elsvier, Amsterdam 1985) p.135 E. Gassman, J.E. Kuo, R.N. Zare: Electrokinetic separation of chiral compounds. Science 230, 813 (1985) M.C. Roach, P.H. Gozel, R.N. Zare: Determination of methotrexate and its major metabolite, 7-hydroxylmethotrexate, using capillary zone electrophoresis and laser-induced fluorescence detection. J. Chromatography 426, 129 (1988)Google Scholar
  95. 10.95
    J.S. McCormack: Remote optical measurements of temperature using fluorescent materials. Electr. Lett. 17, 630 (1981)ADSCrossRefGoogle Scholar
  96. 10.96
    J.C. Hamilton, R.J. Anderson: In situ Raman spectroscopy of Fe-18Cr-3Mo(100) surface oxidation. Sandia Combustion Research Program Annual Rept. (Sandia, Livermore, CA 1984)Google Scholar
  97. 10.97
    R.K. Chang, T.E. Furtak: Surface-Enhanced Raman Scattering (Plenum, New York 1982)Google Scholar
  98. 10.98
    M. Moskovits: Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985)ADSCrossRefGoogle Scholar
  99. 10.99
    Y.R. Shen: Ann. Rev. Mat. Sci. 16, 69 (1986)ADSCrossRefGoogle Scholar
  100. 10.100
    Y.R. Shen: Applications of optical second-harmonic generation in surface science, in Chemistry and Structure at Interfaces, ed. by R.B. Hall, A.B. Ellis (Verlag-Chemie, Weinheim 1986) p. 151Google Scholar
  101. 10.101
    W. Yen, P.M. Selzer (eds): Laser Spectroscopy of Solids, 2nd. ed., Topics Appl. Phys., Vol.49 (Springer, Berlin, Heidelberg 1989) W.M. Yen (ed.): Laser Spectroscopy II, Topics Appl. Phys., Vol.65 (Springer, Berlin, Heidelberg 1989)Google Scholar
  102. 10.102
    F.R. Aussenegg, A. Leitner, M.E. Lippitsch (eds.): Surface Studies with Lasers, Springer Ser. Chem. Phys., Vol.33 (Springer, Berlin, Heidelberg 1983)Google Scholar
  103. 10.103
    K. Kleinermanns. J. Wolfrum: Laser Chemistry — What is Its Current Status?, Angew. Chem. IntO’l Ed. Engl. 26, 38 (1987)CrossRefGoogle Scholar
  104. 10.104
    A.M. Ronn: Laser chemistry. Sci. Am. 240/5, 102 (1979)CrossRefGoogle Scholar
  105. 10.105
    V.S. Letokhov: Nonlinear Laser Chemistry, Springer Ser. Chem. Phys., Vol.22 (Springer, Berlin, Heidelberg 1983)Google Scholar
  106. 10.106
    E. Grunvald, D.F. Dever, P.M. Keener: Megawatt Infrared Laser Chemistry (Wiley, New York 1978)Google Scholar
  107. 10.107
    A. Zewail (ed): Advances in Laser Chemistry, Springer Ser. Chem. Phys., Vol.3 (Springer, Berlin, Heidelberg 1978)Google Scholar
  108. 10.108
    V.S. Letokhov: Laser-induced chemistry — basic nonlinear processes and applications, in [Ref. 10.2, p.237]Google Scholar
  109. 10.109
    R.L. Woodin, A. Kaldor (eds.): Applications of Lasers to Industrial Chemistry. SPIE 458 (SPIE, Bellingham, WA 1984)Google Scholar
  110. 10.110
    J.A. Paisner, R.W. Solarz: Resonance photoionization spectroscopy, in [Ref. 10.1,p. 175] J.A. Paisner: Atomic vapor laser isotope separation, in [Ref. 10.2,p.253]Google Scholar
  111. 10.111
    V.S. Letokhov: Laser separation of isotopes. Ann. Rev. Phys. Chem. 28, 133 (1977) V.S. Letokhov: Laser isotope separation. Nature 277, 605 (1979) J.L. Lyman: Laser-induced molecular dissociation. Applications in isotope separation and related processes, in [Ref. 10.1, p. 417]Google Scholar
  112. 10.112
    H.G. Kuhn: Atomic Spectra (Longmans, London 1962)Google Scholar
  113. 10.113
    N. Bloembergen, E. Yablonovitch: Collisionless multiphoton dissociation of SF6: A statistical thermodynamic process, in Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)Google Scholar
  114. 10.114
    R.V. Ambartzumian, V.S. Letokhov, G.N. Makarov, A.A. Puretsky: Laser separation of nitrogen isotopes. JETP Lett. 17, 63 (1973); JETP Lett. 15, 501 (1972)ADSGoogle Scholar
  115. 10.115
    J.-L. Boulnois: Photophysical processes in recent medical laser developments: A review. Lasers in Med. Sci. 1, 47 (1986) J.-L. Boulnois: Photophysical processes in laser-tissue interactions, in Laser Applications in Cardiovascular Diseases, ed. by R. Ginsburg (Futura, New York 1987)Google Scholar
  116. 10.116
    D. Sliney, M. Wolbarsht: Safety with Lasers and Other Optical Sources (Plenum, New York 1980) ANSI: Laser Standards designed Z 136.1 — 1973 (American National Standards Institute, Wash. 1983).Google Scholar
  117. 10.117
    L. Goldman (ed.): The Biomedical Laser: Technology and Clinical Applications (Springer, Berlin, Heidelberg 1981)Google Scholar
  118. 10.118
    S. Martellucci, A.N. Chester Laser Photobiology and Photomedicine (Plenum, New York 1985)Google Scholar
  119. 10.119
    J.A. Parrish, T.F. Deutsch: Laser photomedicine. IEEE J. QE-20, 1386 (1984)CrossRefGoogle Scholar
  120. 10.120
    T.J. Dougherty: In CRC Critical Reviews in Oncology/Hematology, ed. by S. Davis (CRC, Boca Raton, FL 1984)Google Scholar
  121. 10.121
    Y. Hayata, T.J. Dougherty (eds.): Lasers and Hematoporphyrin Derivative in Cancer (Ikaku-shoin, Tokyo 1983)Google Scholar
  122. 10.122
    R. Pratesi, C.A. Sacchi (eds.): Lasers in Photomedicine and Photobiology, Springer Ser. Opt. Sci. Vol.22 (Springer, Berlin, Heidelberg 1980)Google Scholar
  123. 10.123
    A. Andreoni, R. Cubeddu (eds.): Porphyrins in Tumor Phototherapy (Plenum, New York 1984)Google Scholar
  124. 10.124
    Ch.J. Gomer (ed.): Proc. Clayton Foundation Conf. on Photodynamic Therapy (Childrens Hospital, Los Angeles 1987)Google Scholar
  125. 10.125
    S. Svanberg: Medical diagnostics using laser-induced fluorescence. Phys. Scr. T 17, 469 (1987)ADSCrossRefGoogle Scholar
  126. 10.126
    S. Svanberg: Medical applications of laser spectroscopy. Phys. Scr. T 26, 90 (1989)ADSCrossRefGoogle Scholar
  127. 10.127
    A.E. Profio, D.R. Doiron, O.J. Balchum, G.C. Huth: Fluorescence bronchoscopy for localization of carcinoma in Situ. Med. Phys. 10, 35 (1983)CrossRefGoogle Scholar
  128. 10.128
    H. Kato, D.A. Cortese: Early detection of lung cancer by means of hemato-porphyrin derivative fluorescence and laser photoradiation. Clinics in Chest Medicine 6, 237 (1985)Google Scholar
  129. 10.129
    J.H. Kinsey, D.A. Cortese: Endoscopic system for simultaneous visual examination and electronic detection of fluorescence. Rev. Sci. Instr. 51, 1403 (1980)ADSCrossRefGoogle Scholar
  130. 10.130
    P.S. Andersson, S.E. Karlsson, S. Montán, T. Persson, S. Svanberg, S. Tapper: Fluorescence endoscopy instrumentation for improved tissue characterization. Med. Phys. 14, 633 (1987)CrossRefGoogle Scholar
  131. 10.131
    S. Andersson-Engels, A. Brun, E. Kjellén, L.G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg: Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative. Laser Med. Sci. 4, 241 (1989)CrossRefGoogle Scholar
  132. 10.132
    P.S. Andersson, S. Montán, S. Svanberg: Multi-spectral system for medical fluorescence imaging. IEEE J. QE-23, 1798 (1987)CrossRefGoogle Scholar
  133. 10.133
    S. Udenfriend: Fluorescence Assay in Biology and Medicine, Vol.1 (1962), Vol.11 (1969) (Academic, New York) K.P. Mahler, J.F. Malone: Digital fluorescopy: A new development in medical imaging. Contemp. Phys. 27, 533 (1986) G.M. Barenboim, A.N. Domanskii, K.K. Turoverov: Luminenscence of Biopo-lymers and Cells (Plenum, New York 1969) D.M. Kirschenbaum (ed.): Atlas of Protein Spectra in the Ultraviolet and Visible Regions, Vol.2 (IFI/Plenum, New York 1974)Google Scholar
  134. 10.134
    R.R. Alfano, B.T. Darayash, J. Cordero, P. Tomashefsky, F.W. Longo, M.A. Alfano: Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J. QE-20, 1507 (1984) R.R. Alfano, G.C. Tang, A. Pradhan, W. Lam, D.S.J. Choy, E. Opher. Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J. QE-23, 1806 (1987)Google Scholar
  135. 10.135
    Y.M. Ye, Y.L. Yang, Y.F. Li, F.M. Li: Characteristic autofluorescence for cancer diagnosis and the exploration of its origin. Proc. CLEO’85 (Baltimore, MD)Google Scholar
  136. 10.136
    S. Montán: Diploma paper, Lund Reports on Atomic Physics LRAP-19 (Lund University, Lund 1982) P.S. Andersson, E. Kjellén, S. Montán, K. Svanberg, S. Svanberg: Autofluorescence of various rodent tissues and human skin tumour samples. Lasers in Med. Sci. 2, 41 (1987)Google Scholar
  137. 10.137
    R.R Alfano, W. Lam, H.J. Zarrabi, M.A. Alfano, J. Cordero, D.B. Tata, C.E. Swenberg: Human teeth with and without caries studied by laser scattering, fluorescence and absorption spectroscopy. IEEE J. QE-20, 1512 (1984)CrossRefGoogle Scholar
  138. 10.138
    F. Sundström, K. Fredriksson, S. Montan, U. Hafström-Björkman, J. Ström: Laser-induced fluorescence from sound and carious tooth substance: Spectroscopic studies. Swed. Dent. J. 9, 71 (1985)Google Scholar
  139. 10.139
    C. Kittrell, R.L. Willett, C. de los Santon-Pacheo, N.B. Ratliff, J.R. Kramer, E.G. Malk, M.S. Feld: Diagnosis of fibrous arterial atherosclerosis using fluorescence. Appl. Opt. 24, 2280 (1985) R.M. Cothren, G.B. Hayes, J.R. Kramer, B. Sachs, C. Kittrell, M.S. Feld: Lasers Life Sci. 1, 1 (1986)Google Scholar
  140. 10.140
    P.S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg: Monitoring of human atherosclerotic plaque using laser-induced fluorescence. Lasers Med. Sei. 2, 261 (1987) S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg: Laser-induced fluorescence used in localizing atherosclerotic lesions. Laser Med. Sci. 4, 171 (1989)Google Scholar
  141. 10.141
    J.M. Isner, R.H. Clarke: The current status of lasers in the treatment of cardiovascular disease. IEEE J. QE-20, 1406 (1984) J.M. Isner, P.G. Steg, R.H. Clarke: Current status of cardiovascular laser therapy. IEEE J. QE-23, 1756 (1987)Google Scholar
  142. 10.142
    M.R. Prince, T.F. Deutsch, M.M. Mathews-Roth, R. Margolis, J.A. Parrish, A.R. Oseroff: Preferential light absorption in atheromas in vitro: Implications for laser angioplasty. J. Clin. Invest. 78, 295 (1986)Google Scholar
  143. 10.143
    S.R. Meech, C.D. Stubbs, D. Phillips: The application of fluorescence decay measurements in studies of biological systems. IEEE J. QE-20, 1343 (1984)CrossRefGoogle Scholar
  144. 10.144
    M. Yamashita, M. Nomura, S. Kobayashi, T. Sato, K. Aizawa: Picosecond time-resolved fluorescence spectroscopy of hematoporphyrin derivative. IEEE J. QE-20, 1363 (1984) V.S. Letokhov (ed.): Laser Picosecond Spectroscopy and Photochemistry of Biomolecules (Hilger, Bristol 1987)CrossRefGoogle Scholar
  145. 10.145
    L. Stryer: The molecules of visual excitation. Sci. Am. 257/1, 32 (1987)CrossRefGoogle Scholar
  146. 10.146
    D.B. Tata, M. Foresti, J. Cardero, P. Thomachefsky, M.A. Alfano, R.R. Alfano: Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues. Biophys. J. 50, 463 (1986)CrossRefGoogle Scholar
  147. 10.147
    S. Andersson-Engels, J. Johansson, S. Svanberg: The use of time-resolved fluorescence for diagnosis of atherosclerotic plaque and malignant tumours. Spec-trochim. Acta A 46, 1203 (1990)ADSCrossRefGoogle Scholar
  148. 10.148
    S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg: Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers. Pt.I, Anal. Chem. 61, 1367A (1989); Pt.II, ibid. 62, 19A (1990)Google Scholar
  149. 10.149
    S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg: Malignant tumor and atherosclerotic plaque diagnostics using laser-induced fluorescence. IEEE J. QE-26, 2207 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Sune Svanberg
    • 1
  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations