Skip to main content

Physiologie der Entwicklung

  • Chapter
Pflanzenphysiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 190 Accesses

Zusammenfassung

Lebendige Systeme müssen als in beständiger Entwicklung befindliche Systeme aufgefaßt werden. Diese Feststellung gilt für die Einzelzelle ebenso wie für das vielzellige System. Wenn man einen Organismus kennzeichnen will, muß man deshalb seine gesamte Ontogenie (Individualentwicklung) ins Auge fassen, nicht nur bestimmte Ausschnitte aus dieser Ontogenie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

a. Grundlegende Gesichtspunkte

  • Bell PR (1970) The archeogoniate revolution. Sci Progr Oxf 58: 27–435

    CAS  Google Scholar 

  • Furuya M (1978) Photocontrol of developmental processes in fern gametophytes. Bot Mag Tokyo Special Issue 1: 219–242

    CAS  Google Scholar 

  • Girnish TJ (ed) (1986) On the economy of plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Klekowski EJ (1988) Mutation, developmental selection, and plant evolution. Columbia University Press, New York

    Google Scholar 

  • Miller JH (1968) Fern gametophytes as experimental material. Bot Reviews 34: 361–440

    Article  CAS  Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis (chapter 21: Examples of blue-light-mediated photomorphogenesis). Springer, Berlin Heidelberg New York

    Book  Google Scholar 

b. Wachstum

  • Bertalanffy LV (1942) Theoretische Biologie, Bd. II. Bornträger, Berlin

    Google Scholar 

  • Erickson RO, Silk WK (1980) The kinematics of plant growth. Sci Amer 242(may issue): 102–113

    Article  Google Scholar 

  • Poethig S (1989) Genetic mosaics and cell lineage analysis in plants. Trends Genet 5: 273–277

    Article  CAS  PubMed  Google Scholar 

  • Sinnot EW (1960) Plant Morphogenesis. McGraw Hill, New York Toronto London

    Google Scholar 

  • Thompson DW (1942) On growth and form, 2d ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Vöchting H (1878) Über Organbildung im Pflanzenreich. Cohen, Bonn

    Google Scholar 

c. Differenzierung

  • Fukuda H (1989) Cytodifferentiation in isolated single cells. Bot Mag Tokyo 102: 491–501

    Article  Google Scholar 

  • Green PB, Poethig RS (1982) Biophysics of the extension and initiation of plant organs. In: Subtelny S, Green PB (eds) Developmental order: its origin and regulation. Liss, New York, pp 485–509

    Google Scholar 

  • Heslop-Harrison J (1967) Differentiation. Annu Rev Plant Physiol 18: 325–348

    Article  Google Scholar 

  • Maclean N, Hall BK (1987) Cell commitment and differentiation. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Okamuro JK, Goldberg RB (1989) Regulation of plant gene expression: General principles. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, Vol 15. Academic Press, San Diego New York, pp 1–82

    Google Scholar 

  • Phillips R (1980) Cytodifferentiation. Int Rev Cytol Suppl 11A: 55–70

    CAS  Google Scholar 

  • Stange L (1965) Plant cell differentiation. Annu Rev Plant Physiol 16: 119–140

    Article  CAS  Google Scholar 

  • Vodkin LO (1989) Transposable element influence on plant gene expression and variation. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, Vol 15. Academic Press, San Diego New York, pp 83–112

    Google Scholar 

d. Musterbildung und Morphogenese

  • Barlow PW, Carr DJ (1984) Positional controls in plant development. Cambridge University Press, Cambridge

    Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Reviews 57: 318–358

    Article  Google Scholar 

  • Coen ES (1991) The role of homeotic genes in flower development and evolution. Annu Rev Plant Physiol Plant Mol Biol 42: 241–279

    Article  Google Scholar 

  • Green PB (1985) Surface of the shoot apex: A reinforom field theory for phyllotaxis 1 Cline

    Google Scholar 

  • Lamoreaux RJ, Chaney WR, Brown KM (1978) The plastochron index: A review after two decades of use. Amer J Bot 65: 586–593

    Article  Google Scholar 

  • Maksymowych R (1973) Analysis of leaf development. Cambridge University Press, London

    Google Scholar 

  • Meyerowitz EM (1987) Arabidopsis thaliana. Annu Rev Genet 21: 93–111

    Article  CAS  PubMed  Google Scholar 

  • Mitchison GJ (1977) Phyllotaxis and the Fibonacci series. Science 196: 270–275

    Article  CAS  PubMed  Google Scholar 

  • Poethig, RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–930

    Article  CAS  PubMed  Google Scholar 

  • Roberts DW (1984) A chemical contact pressure model for phyllotaxis. J theoret Biol 108: 481–490

    Article  Google Scholar 

  • Rutishauser R (1982) Der Plastochronquotient als Teil einer quantitativen Blattstellungsanalyse bei Samenpflanzen. Beitr Biol Pflanzen 57: 323–357

    Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sattler R (ed) (1982) Axioms and principles of plant construction. Martinus Nijhoff — Dr W Junk Publ, The Hague Boston New York

    Google Scholar 

  • Sinnot EW (1960) Plant morphogenesis. McGraw Hill, New York Toronto London

    Google Scholar 

  • Sinnot EW (1963) The problem of organic form. Yale University Press, New Haven

    Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. 2. ed. Cambridge University Press, Cambridge New York

    Book  Google Scholar 

  • Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56: 225–229

    Article  CAS  PubMed  Google Scholar 

  • Williams RF (1975) The shoot apex and leaf growth. Cambridge University Press, London

    Book  Google Scholar 

e. Tumorbildung bei Pflanzen

  • Ahuja MR (1965) Genetic control of tumor formation in higher plants. Quart Rev Biol 40: 329–340

    Article  Google Scholar 

  • Anders F (1981) Erb-und Umweltfaktoren im Ursachengefüge des neoplastischen Wachstums nach Studien an Xi-phophorus. In: Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte 1980, pp 106–119. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  • Bishop JM (1982) Oncogenes. Scientific American 246 (march issue), pp 69–78

    Article  Google Scholar 

  • Chilton MD et al. (1977) Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell 11: 263–271

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa T, Syono K (1991) Tobacco genetic tumors. Plant Cell Physiol 32: 1123–1128

    CAS  Google Scholar 

  • Kado CI (1991) Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10: 1–32

    Article  CAS  Google Scholar 

  • Kahl G, Schell JS (1982) Molecular biology of plant tumors. Academic Press, New York

    Google Scholar 

  • Powell A, Gordon MP (1989) Tumor formation in plants. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, Vol 15. Academic Press, San Diego New York, pp 617–651

    Google Scholar 

  • Schell J (1982) The Ti-plasmids of Agrobacterium tumefaciens. In: Encycl Plant Physiol NS, Vol 14B. Springer, Berlin Heidelberg New York, pp 455–474

    Google Scholar 

f. Morphogenese bei Acetabularia

  • Hämmerling J (1963) Nucleo-cytoplasmic interactions in Acetabularia and other cells. Annu Rev Plant Physiol 14: 65–92

    Article  Google Scholar 

  • Schmid R (1984) Blue light effects on morphogenesis and metabolism in Acetabularia. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin Heidelberg New York, pp 419–432

    Chapter  Google Scholar 

  • Schweiger HG (1976) Nucleocytoplasmic interaction in Acetabularia. In: King RC (ed) Handbook of genetics, Vol 5. Plenum, New York London, pp 451–475

    Chapter  Google Scholar 

  • Zeitsche K (1968) Steuerung der Zelldifferenzierung bei der Grünalge Acetabularia. Biol Rdsch 6: 97–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohr, H., Schopfer, P. (1992). Physiologie der Entwicklung. In: Pflanzenphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97370-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97370-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97371-0

  • Online ISBN: 978-3-642-97370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics