Skip to main content

Photosynthese als Funktion des Chloroplasten

  • Chapter
Pflanzenphysiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 189 Accesses

Zusammenfassung

Die universelle Energiequelle der Biosphäre ist die Sonne. Bei den in der Sonne ablaufenden Kernfusionsprozessen wird Materie in Energie umgewandelt (z.B. 4 Protonen → Heliumkern + 2 Positronen + 4,5 · 10−12 J), welche in Form von elektromagnetischer Strahlung (h v) in den Weltraum abgegeben wird. Die Energieverteilung der Sonnenstrahlung entspricht in erster Näherung dem kontinuierlichen Emissionsspektrum eines schwarzen Körpers bei etwa 5800 K. Durch Streuverluste und selektive Absorption von Quanten in der Erdatmosphäre wird das Sonnenspektrum modifiziert (Abb. 12.1), wobei der Energiefluß der Strahlung von 1,4 kW·m−2 (Solarkonstante) auf ≦ 0,9 kW·m−2 (Meeresniveau) reduziert wird. Etwa die Hälfte davon entfällt auf den Spektralbereich von 300–800 nm (das „optische Fenster“ der Atmosphäre; → Abb. 12.1), welcher mitten in dem Bereich photochemisch wirksamer Strahlung (ca. 100–1000 nm) liegt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Clayton RK (1980) Photosynthesis: Physical mechanisms and chemical patterns. Cambridge Univ. Press, Cambridge London New York

    Google Scholar 

  • Elstner E (1990) Der Sauerstoff-Biochemie, Biologie, Medizin. Wissenschaftsverlag, Mannheim Wien

    Google Scholar 

  • Flügge U-I, Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Article  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: Structure and dynamics. Annu Rev Microbiol 36: 173–198

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1983) Comparative biochemistry of photosynthetic light-harvesting systems. Annu Rev Biochem 52: 125–157

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN, Melis A (1987) Photochemical reaction centers: Structure, organization, and function. Annu Rev Plant Physiol 38: 11–45

    Article  CAS  Google Scholar 

  • Govindjee (ed) (1982) Photosynthesis. Vol. I, Energy conversion by plants and bacteria. Vol. II, Development, carbon metabolism, and plant productivity. Academic Press, New York London

    Google Scholar 

  • Gregory RPF (1989) Biochemistry of photosynthesis. 3. ed. Wiley, Chichester New York

    Google Scholar 

  • Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13: 651–666

    Article  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–693

    Article  CAS  Google Scholar 

  • Harold F (1986) The vital force: A study of bioenergetics. Freeman, New York

    Google Scholar 

  • Hatch MD, Boardman NK (eds) (1981 and 1987) Photosynthesis. In: The biochemistry of plants. A comprehensive treatise. Vol. 8 and 10. Academic Press, San Diego New York

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Lawlor DW (1990) Photosynthese. Stoffwechsel — Kontrolle — Physiologic Thieme, Stuttgart

    Google Scholar 

  • Oesterhelt D (1985) Light-driven proton pumping in halobacteria. Bio Science 35: 18–21

    CAS  Google Scholar 

  • Renger G (1982) Photosynthese. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. 2. Aufl. Springer, Berlin Heidelberg New York, pp 532–561

    Chapter  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    Article  CAS  Google Scholar 

  • Sommerville CR (1986) Analysis of photosynthesis with mutants of higher plants and algae. Annu Rev Plant Physiol 37: 467–507

    Article  Google Scholar 

  • Staehelin LA, Arntzen CJ (eds) (1986) Photosynthesis III. Photosynthetic membranes and light harvesting systems. Encycl Plant Physiol NS, Vol 19. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    Article  CAS  PubMed  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83: 702–708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohr, H., Schopfer, P. (1992). Photosynthese als Funktion des Chloroplasten. In: Pflanzenphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97370-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97370-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97371-0

  • Online ISBN: 978-3-642-97370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics