Dynamics of Atomic Structure

  • Satoru Sugano
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 20)

Abstract

Fluctuation of atomic structures of metal microclusters is observed by using an electron microscope of atomic resolution with a television camera. Such a structural fluctuation is one of the characteristics of microclusters. By using a computer, dynamical properties of small microclusters are studied for the size N = 13 bound by the Lennard-Jones interaction. The coexistence of solid-like and liquid-like phases is pointed out at the effective temperature between those for melting and freezing. On the other hand, for the transition-metal cluster of size N = 6, a fluctuating state accompanying no atomic diffusion is found just below the melting temperature, and a transition to permutation isomers accompanying atomic diffusion just above the melting temperature. Thermal properties of transition-metal microclusters are studied by using Monte-Carlo simulations in both cases of absence and presence of a magnetic interaction. It is observed that a sharp magnetic transition exists even in the small magnetic cluster of size N = 7.

Keywords

Argon Hexagonal Lution Reso Ferro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    J. Farges, M.F. de Feraudy, B. Raoult, G. Torchet: J. Chem. Phys. 78, 5067 (1983)ADSCrossRefGoogle Scholar
  2. 2.1a
    J. Farges, M.F. de Feraudy, B. Raoult, G. Torchet: J. Chem. Phys. 84, 3491 (1986)ADSCrossRefGoogle Scholar
  3. 2.2
    S. Iijima: In Microclusters, ed. by S. Sugano, Y. Nishina, S. Ohnishi. Springer Ser. Mat. Sci., Vol.4 (Springer, Berlin, Heidelberg 1987) p.186CrossRefGoogle Scholar
  4. 2.3
    M.R. Hoare: Adv. Chem. Phys. 40, 49 (1979)CrossRefGoogle Scholar
  5. 2.4
    M. Mitome, Y. Tanishiro, K. Takayanagi: Z. Phys. D 12, 45 (1989)ADSCrossRefGoogle Scholar
  6. 2.5
    J. Jellinek, T.L. Beck, R.S. Berry: J. Chem. Phys. 84, 2783 (1986)ADSCrossRefGoogle Scholar
  7. 2.5a
    D.W. Heermann: Computer Simulation Methods in Theoretical Physics, 2nd edn. (Springer, Berlin, Heidelberg 1990)MATHGoogle Scholar
  8. 2.6
    R.S. Berry, J. Jellinek, G. Natanson: Phys. Rev. A 30, 919 (1984)ADSCrossRefGoogle Scholar
  9. 2.7
    S. Sawada, S. Sugano: Z. Phys. D 14, 247 (1989)ADSCrossRefGoogle Scholar
  10. 2.8
    R.P. Gupta: Phys. Rev. B 23, 6265 (1981)ADSCrossRefGoogle Scholar
  11. 2.9
    M.B. Gordon, F. Cyrot-Lackmann, M.C. Desjonqueres: Surf. Sci. 80, 159 (1979)ADSCrossRefGoogle Scholar
  12. 2.10
    D. Tomanek, S. Mukherjee, K.H. Bennemann: Phys. Rev. B 28, 665 (1983)ADSCrossRefGoogle Scholar
  13. 2.11
    E.M. Pearson, H. Halicioglu, W.A. Tiller: Phys. Rev. A 32, 3030 (1985)ADSCrossRefGoogle Scholar
  14. 2.12
    K. Binder, D. Stauffer: Application of the Monte Carlo Method in Statistical Physics ed. by K. Binder, 2nd edn., Topics Current Phys. Vol.36 (Springer, Berlin, Heidelberg 1987) p.1Google Scholar
  15. 2.13
    K. Binder, D.W. Heermann: Monte Carlo Simulation in Statistical Physics, Springer Ser. Solid-State Sci., Vol.80 (Springer, Berlin, Heidelberg 1988)MATHGoogle Scholar
  16. 2.14
    H.T. Diep, S. Sawada, S. Sugano: Phys. Rev. B 39, 9252 (1989)ADSCrossRefGoogle Scholar
  17. 2.15
    N. Quirke: Mol. Simulation 1, 249 (1988)CrossRefGoogle Scholar
  18. 2.16
    J.P. Hansen, L. Varlet: Phys. Rev. 184, 151 (1969)ADSCrossRefGoogle Scholar
  19. 2.17
    T.L. Beck, J. Jellinek, R.S. Berry: J. Chem. Phys. 87, 545 (1987)ADSCrossRefGoogle Scholar
  20. 2.18
    T.L. Beck, R.S. Berry: J. Chem. Phys. 88, 3910 (1988)ADSCrossRefGoogle Scholar
  21. 2.19
    N. Fujima, T. Yamaguchi: J. Phys. Soc. Jpn. 58, 3290 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Satoru Sugano
    • 1
    • 2
  1. 1.Faculty of ScienceHimeji Institute of TechnologyAko-gunnJapan
  2. 2.Institute for Solid State PhysicsUniversity of TokyoMinato-ku, TokyoJapan

Personalised recommendations