Homogeneous Metallic Systems

  • P. Fulde
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 100)


The traditional theories of electrons in metals, such as the Sommerfeld theory, pay little attention to electron-electron interactions. Instead, the electrons are treated as an ideal gas of fermions. The electrons move in an external potential, which is set up by the nuclei and the core electrons. The interactions between the conduction electrons are not considered, a somewhat astonishing fact given that the latter are not weak at all. Despite this, the Sommerfeld theory has been very successful in describing qualitatively and — in its more sophisticated forms — even quantitatively the physical properties of systems like the alkali or earth-alkali metals. These findings were set in the appropriate theoretical framework by Landau, who introduced the concept of quasiparticle and quasihole excitations of a Fermi liquid [10.1]. These excitations are restricted to a regime in momentum space close to the Fermi surface and are indeed weakly interacting. Instead of trying to calculate their residual interactions microscopically, which would be a very difficult task, the interactions are parametrized. These parameters enter the expressions for different physical quantities and therefore can be determined — at least in principle — when those quantities are measured. Landau’s Fermi-liquid theory was originally devised for isotropic systems like 3He, rather than realistic metals; if extended to anisotropic systems, it loses some of its simplicity and it becomes difficult to make predictions from it. Nevertheless, it remains an important concept for the understanding of real metals.


Fermi Surface Random Phase Approximation Fermi Liquid Spin Fluctuation Spin Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 10

  1. 10.1
    L.D. Landau: Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Engl. transl.: Sov. Phys.-JETP 3, 920 (1957)]; Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Engl. transl.: Sov. Phys.-JETP 5, 101 (1957)]Google Scholar
  2. 10.2
    D. Bohm, D. Pines: Phys. Rev. 92, 609 (1953)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 10.3
    T. Moriya, A. Kawabata: J. Phys. Soc. Jpn. 34, 639, 669 (1973)ADSCrossRefGoogle Scholar
  4. 10.4
    K.K. Murata, S. Doniach: Phys. Rev. Lett. 29, 285 (1972)ADSCrossRefGoogle Scholar
  5. 10.5
    D. Pines, P. Nozières: The Theory of Quantum Liquids, Vol. I (W.A. Benjamin, New York 1966)Google Scholar
  6. 10.6
    A.A. Abrikosov, I.M. Khalatnikov: Reports Progr. Phys. 22, 329 (1959)ADSCrossRefGoogle Scholar
  7. 10.7
    G. Baym, C.J. Pethick: In The Physics of Liquid and Solid Helium, Vol. 2, ed. by K.H. Bermemann, J.B. Ketterson (Wiley, New York 1978)Google Scholar
  8. 10.8
    A.J. Leggett: Rev. Mod. Phys. 47, 331 (1975)ADSCrossRefGoogle Scholar
  9. 10.9
    C. Kittel: Introduction to Solid State Physics, 6th edn. (Wiley, New York 1986)Google Scholar
  10. 10.10
    L.D. Landau, L.P. Pitajewski: Physical Kinetics Course of Theoretical Physics, ed. by L.D. Landau, E.M. Lifshitz, Vol. 10 (Pergamon, Oxford 1981)Google Scholar
  11. 10.11
    V.M. Galitskii, A.B. Migdal: Zh. Eksp. Teor. Fiz. 34, 139 (1958) [Engl. transl.: Sov. Phys.-JETP 7, 96 (1958)]MathSciNetGoogle Scholar
  12. 10.12
    M. Gell-Mann, K. Brueckner: Phys. Rev. 106, 364 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 10.13
    W. Macke: Z. Naturforsch. 5a, 192 (1950)ADSGoogle Scholar
  14. 10.14
    J. Friedel: Philos. Mag. 43, 153 (1952)MATHGoogle Scholar
  15. 10.15
    P. Horsch, P. Fulde: Z. Phys. B 36, 23 (1979)ADSCrossRefGoogle Scholar
  16. 10.16
    R. Kubo: Rep. Prog. Phys. 29, part I, 255 (1966)ADSCrossRefGoogle Scholar
  17. 10.17
    H.B. Callen, R.F. Welton: Phys. Rev. 86, 702 (1952)ADSMATHCrossRefGoogle Scholar
  18. 10.18
    E.C. Stoner: Proc. Soc. London A 165, 372 (1938)ADSCrossRefGoogle Scholar
  19. 10.19
    J.C. Slater: Phys. Rev. 49, 537, 931 (1936)ADSCrossRefGoogle Scholar
  20. 10.20
    J. Hertz, M. Klenin: Phys. Rev. B 10, 1084 (1974)ADSCrossRefGoogle Scholar
  21. 10.21
    M. Cyrot: In Electron Correlation and Magnetism in Narrow-Band Systems, ed. by T. Moriya, Springer Ser. Solid-State Sci., Vol. 29 (Springer, Berlin, Heidelberg 1981)Google Scholar
  22. 10.22
    L. Onsager: J. Am. Chem. Soc. 58, 1486 (1936)CrossRefGoogle Scholar
  23. 10.23
    T. Izuyama, D.J. Kim, R. Kubo: J. Phys. Soc. Jpn. 18, 1025 (1963)ADSMATHCrossRefGoogle Scholar
  24. 10.24
    N. Berk, J.R. Schrieffer: Phys. Rev. Lett. 17, 433 (1966)ADSCrossRefGoogle Scholar
  25. 10.25
    S. Doniach, S. Engelsberg: Phys. Rev. Lett. 17, 750 (1966)ADSCrossRefGoogle Scholar
  26. 10.26
    W. Brenig, H.J. Mikeska, E. Riedel: Z. Phys. 206, 439 (1967)ADSCrossRefGoogle Scholar
  27. 10.27
    M.T. Beal-Monod, S.K. Ma, D.R. Fredkin: Phys. Rev. Lett. 20, 929 (1968)ADSCrossRefGoogle Scholar
  28. 10.28
    S. Daniach, E.H. Sondheimer: Green’s Functions for Solid State Physicists (Benjamin/Cummings, London 1974)Google Scholar
  29. 10.29
    G.G. Lonzarich, N.R. Bernhoeft, D. McK. Paul: Physica B 156&157, 699 (1989)CrossRefGoogle Scholar
  30. 10.30
    A.L. Fetter, J.D. Walecka: Quantum Theory of Many-Particle Systems (McGraw-Hill, New York 1971)Google Scholar
  31. 10.31
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski: Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ 1963)MATHGoogle Scholar
  32. 10.32
    K.S. Singwi, M.P. Tosi, R.H. Land, A Sjölander: Phys. Rev. 176, 589 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Berlin Heidelberg 1991

Authors and Affiliations

  • P. Fulde
    • 1
  1. 1.MPI für FestkörperforschungStuttgart 80Deutschland

Personalised recommendations