Advertisement

Random Processes

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)

Abstract

When a deterministic description of a system is impossible, one can still use a statistical description based on the probabilities of observing particular outcomes. In the simplest case, only the probabilities of single random events are considered. However, in studies of dynamical phenomena it is often necessary to know the probabilities of entire sequences of random events that are not independent of one another. This description can be constructed within the mathematical theory of random processes.

Keywords

Random Process Correlation Time Time Moment Pair Correlation Function Gaussian Random Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    S. Wolfram: Physica D 22, 385–399 (1986)MathSciNetGoogle Scholar
  2. 8.2
    S.A. Kauffman: Physica D 10, 145–156 (1984)MathSciNetADSCrossRefGoogle Scholar
  3. 8.3
    G. Grinstein, C. Jayaprakash, Yu. He: Phys. Rev. Lett. 55, 2527–2530 (1985)MathSciNetADSCrossRefGoogle Scholar
  4. 8.4
    E. Domany, W. Kinzel: Phys. Rev. Lett. — 1984, V. 53, p. 311–314MathSciNetADSCrossRefGoogle Scholar
  5. 8.5
    W. Kinzel: Z. Phys. B 58, 229–244 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 8.6
    G.Y. Vichniac: “Cellular automata models of disorder and organization”, in Disordered Systems and Biological Organization, ed. by E. Bienenstock et al. (Springer, Berlin, Heidelberg 1986) pp. 3–20CrossRefGoogle Scholar
  7. 8.7
    O.A. Druzhinin, A.S. Mikhailov: Izv. VUZ. Radiofizika 32, 444–450 (1989)Google Scholar
  8. 8.8
    A.T. Bharucha-Reid: Elements of the Theory of Markov Processes and Their Applications (McGraw-Hill, New York 1960)zbMATHGoogle Scholar
  9. 8.9
    W. Feller: An Introduction to Probability Theory and its Applications, Vols. 1 and 2 (Wiley, New York 1968 and 1971)zbMATHGoogle Scholar
  10. 8.10
    M. Loeve: Probability Theory, Vols. 1 and 2 (Springer, Berlin, Heidelberg 1977 and 1978)zbMATHGoogle Scholar
  11. 8.11
    R. von Mises: Mathematical Theory of Probability and Statistics (Academic, New York 1964)zbMATHGoogle Scholar
  12. 8.12
    Yu.V. Prokhorov, Yu.A. Rozanov: Probability Theory (Springer, Berlin, Heidelberg 1968)Google Scholar
  13. 8.13
    C.W. Gardiner: Handbook of Stochastic Methods (Springer, Berlin, Heidelberg 1985)Google Scholar
  14. 8.14
    H. Haken: Synergetics, An Introduction, 3rd ed. (Springer, Berlin, Heidelberg 1983)zbMATHGoogle Scholar
  15. 8.15
    J.L. Doob: Stochastic Processes (Wiley, New York 1953)zbMATHGoogle Scholar
  16. 8.16
    R.L. Stratonovich: Topics in the Theory of Random Noise, Vols. I and II (Gordon and Breach, New York 1963 and 1967)Google Scholar
  17. 8.17
    N.G. van Kampen: Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam 1983)Google Scholar
  18. 8.18
    H. Risken: The Fokker-Planck Equation, 2nd ed. (Springer, Berlin, Heidelberg 1989)zbMATHCrossRefGoogle Scholar
  19. 8.19
    W. Horsthemke, R.L. Lefever: Noise-Induced Transitions (Springer, Berlin, Heidelberg 1984)zbMATHGoogle Scholar
  20. 8.20
    F. Moss, P.V.E. McClintock (eds.): Noise in Nonlinear Dynamical Systems; Theory, Experiment, Simulations (3 volumes) (Cambridge University Press, Cambridge 1989)Google Scholar
  21. 8.21
    R.F. Pawula: Phys. Rev. 162, 186 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
    • 2
  • Alexander Yu. Loskutov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR
  2. 2.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations