Advertisement

Spatio-Temporal Chaos

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)

Abstract

So far, we have considered only systems which are not distributed (i.e. are described by a finite set of differential equations). However, the majority of the results obtained are also applicable to distributed active systems, provided that spatial coherence of the patterns is maintained. Because of the long-range spatial order, the dynamics of coherent patterns can be effectively described by models involving only a small number of independent variables. As we already know, this does not exclude that the temporal behavior of a pattern will be chaotic (i.e. that long-range temporal order will be absent). In the latter case, the resulting regime can be described as “early” (or few-mode) turbulence.

Keywords

Fractal Dimension Lyapunov Exponent Strange Attractor Spatial Coherence Correlation Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 7.1
    A.V. Babin, M.I. Vishik: Usp. Mat. Nauk 38, 133–187 (1983)MathSciNetGoogle Scholar
  2. 7.2
    O.A. Ladyzhenskaya: Usp. Mat. Nauk 42, 25–60 (1987)MathSciNetGoogle Scholar
  3. 7.3
    P.R. Gromov, A.B. Zobnin, M.I. Rabinovich, A.M. Reiman, M.M. Sushchik: Dokl. Akad. Nauk SSSR 292, 284–287 (1987)MathSciNetADSGoogle Scholar
  4. 7.4
    D. Ruelle: Commun. Math. Phys. 93, 285–300 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 7.5
    P. Constantin, C. Foias, B. Nikolaenko, R. Teman: Integral Manifolds for Dissipative Partial Differential Equations (Springer, Berlin, Heidelberg 1989)zbMATHCrossRefGoogle Scholar
  6. 7.6
    P. Constantin, C. Foias, J.D. Gibbon: Nonlinearity 2, 241 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.7
    R. Temam: “Attractors for Navier-Stokes equations”, in Nonlinear Differential Equations and Their Applications (Pitman, London 1985) pp. 272–292Google Scholar
  8. 7.8
    D.V. Lyubimov, G.F. Putin, V.I. Chernatynskii: Dokl. Akad. Nauk SSSR 235, 554–556 (1977)Google Scholar
  9. 7.9
    M.I. Rabinovich: Usp. Fiz. Nauk 125, 123–168 (1978)MathSciNetGoogle Scholar
  10. 7.10
    N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw: Phys. Rev. Lett. 45, 712–716 (1980)ADSCrossRefGoogle Scholar
  11. 7.11
    F. Takens: “Detecting strange attractors in turbulence”, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin, Heidelberg 1981) pp. 366–381CrossRefGoogle Scholar
  12. 7.12
    M.W. Hirsh: Differential Topology (Springer, Berlin, Heidelberg 1989)Google Scholar
  13. 7.13
    J.D. Farmer: Physica D 4, 366–393 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 7.14
    R. Mane: “On the dimension of the compact invariant sets of certain nonlinear maps”, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin, Heidelberg 1981) pp. 230–242CrossRefGoogle Scholar
  15. 7.15
    S.N. Lukashchuk, A.A. Predtechenskii, G. E. Falkovich, A.I. Chernykh: “Calculation of attractor dimensions from experimental data”, preprint 280, Inst. Automatics and Electrometry, Novosibirsk 1985Google Scholar
  16. 7.16
    D.S. Broomhead, G.P. King: Physica D 20, 217–236 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 7.17
    A.I. Smimov: Zh. Eksp. Teor. Fiz. 94, 185–193 (1988)Google Scholar
  18. 7.18
    P. Grassberger, I. Procaccia: Phys. Rev. Lett. 50, 346–349 (1983)MathSciNetADSCrossRefGoogle Scholar
  19. 7.19
    P. Grassberger, I. Procaccia: Physica D 9, 189–208 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 7.20
    B. Malraison, P. Atten, P. Berge, M. Dubois: J. Physique Lett. (Paris) 44, L897–L902 (1983)Google Scholar
  21. 7.21
    A. Babloyantz, J.N. Salazar, C. Nicolis: Phys. Lett. A 111, 152–156 (1985)ADSCrossRefGoogle Scholar
  22. 7.22
    I. Dvorak, J. Siska: Phys. Lett. A 118, 63–66 (1986)ADSCrossRefGoogle Scholar
  23. 7.23
    H. Yamazaki, M. Mino, H. Nagashima, M. Warden: J. Phys. Soc. Japan 56, 742–750 (1987)ADSCrossRefGoogle Scholar
  24. 7.24
    M. Eiswirth, K. Krischer, G. Ertl: Surface Sci. 202, 565–591 (1988)ADSCrossRefGoogle Scholar
  25. 7.25
    A. Ben-Mizrachi, I. Procaccia, P. Grassberger: Phys. Rev. A 29, 975–977 (1984)ADSCrossRefGoogle Scholar
  26. 7.26
    K. Pawelzik, H.G. Schuster: Phys. Rev. A 35, 481–484 (1987)ADSCrossRefGoogle Scholar
  27. 7.27
    S. Sato, M. Sano, Y. Sawada: Progr. Theor. Phys. 77, 1–5 (1987)MathSciNetADSCrossRefGoogle Scholar
  28. 7.28
    A. Wolf, J. Swift, H.L. Swinney, J. Vastano: Physica D 16, 285–317 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 7.29
    G. Mayer-Kress (ed.): Dimensions and Entropies in Chaotic Systems (Springer, Berlin, Heidelberg 1986)zbMATHGoogle Scholar
  30. 7.30
    I.V. Aranson, A.M. Reiman, V.G. Shekhov: “Measurement methods for correlation dimensions”, in Nonlinear Waves 2. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 29–33Google Scholar
  31. 7.31
    A.M. Fraser, H.L. Swinney: Phys. Rev. A 33, 1134–1140 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 7.32
    N.B. Abraham, A.M. Albano, B. Das et al.: Phys. Lett. A 114, 217–221 (1986)ADSCrossRefGoogle Scholar
  33. 7.33
    J. Theiler: Phys. Rev. A 36, 4456–4462 (1987)MathSciNetADSCrossRefGoogle Scholar
  34. 7.34
    I. Dvorak, J. Klaschka: Phys. Lett. A 145, 225–231 (1990)MathSciNetADSCrossRefGoogle Scholar
  35. 7.35
    V.S. Afraimovich, A.M. Reiman: “Dimensions and entropies in multi-dimensional systems”, in Nonlinear Waves 2. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 2–28Google Scholar
  36. 7.36
    Y. Kuramoto: Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, Heidelberg 1984)zbMATHCrossRefGoogle Scholar
  37. 7.37
    P. Constantin, C. Foias, R. Temam: Attractors Representing Turbulent Flows (Mem. Amer. Math. Soc., Vol. 53, 1985)Google Scholar
  38. 7.38
    C.R. Doering, J.D. Gibbon, D.D. Holm, B. Nicolaenko: Phys. Rev. Lett. 59, 2911–2914 (1987)ADSCrossRefGoogle Scholar
  39. 7.39
    C.R. Doering, J.D. Gibbon, D.D. Holm, B. Nicolaenko: Nonlinearity 1, 279–309 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 7.40
    T.S. Akhromeyeva, S.P. Kurdyumov, G.G. Malinetskii, A.A. Samarskii: Phys. Rep. 176, 189–370 (1989)MathSciNetADSCrossRefGoogle Scholar
  41. 7.41
    I.S. Aranson, A.V. Gaponov-Grekhov, M.I. Rabinovich: Zh. Eksp. Teor. Fiz. 89, 92–105 (1985)ADSGoogle Scholar
  42. 7.42
    I.S. Aranson, A.V. Gaponov-Grekhov, M.I. Rabinovich, I.P. Starobinets: Zh. Eksp. Teor. Fiz. 90, 1707–1718 (1986)MathSciNetADSGoogle Scholar
  43. 7.43
    A.V. Gaponov-Grekhov, M.I. Rabinovich: Radiophys. and Quantum Electron. 30, 93–102 (1987)MathSciNetADSCrossRefGoogle Scholar
  44. 7.44
    M.I. Rabinovich: “Nonlinear dynamics and turbulence”, in Nonlinear Waves 2. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 52–64Google Scholar
  45. 7.45
    H. Haken: “Spatial and temporal pattern formed by systems far from equilibrium”, in Nonequilibrium Dynamics in Chemical Systems, ed. by C. Vidal, A. Pacault (Springer, Berlin, Heidelberg 1984) pp. 7–21CrossRefGoogle Scholar
  46. 7.46
    A.V. Gaponov-Grekhov, M.I. Rabinovich: “Dynamic chaos in ensembles of structures and spatial development of turbulence in unbounded systems”, in Selforganization by Nonlinear Irreversible Processes, ed. by W. Ebeling, H. Ulbricht (Springer, Berlin, Heidelberg 1984) pp. 37–46Google Scholar
  47. 7.47
    O.A. Druzhinin, A.S. Mikhailov: Phys. Lett. A 148, 429–433 (1990)ADSCrossRefGoogle Scholar
  48. 7.48
    K. Kaneko: Physica D 34, 1–41 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 7.49
    L.A. Bunimovich, Ya.G. Sinai: Nonlinearity 1, 491–516 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 7.50
    J.P. Crutchfield, K. Kaneko: Phys. Rev. Lett. 60, 2715–2718 (1988)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
    • 2
  • Alexander Yu. Loskutov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR
  2. 2.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations