Advertisement

Routes to Temporal Chaos

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)

Abstract

Temporal chaos sets in after the breakdown of long-range time order and the disappearance of coherent temporal behavior. In the previous chapter we outlined one of the possible transitions to chaos in the special case of models with discrete time. Now we want to discuss the principal scenarios leading to temporal chaos in general dynamical systems. Before proceeding to this discussion, we briefly describe some of the concepts of bifurcation theory which are used in the analysis.

Keywords

Vector Field Strange Attractor Phase Trajectory Invariant Torus Stable Limit Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    A.A. Andronov, S. Khaikin: Theory of Oscillations (ONTI, Moscow 1939) [English transl.: Princeton University Press, Princeton 1949]Google Scholar
  2. 6.2
    E. Hopf: Phys. Sachs. Acad. Wiss. Leipzig 94, 1–22 (1942)Google Scholar
  3. 6.3
    V.I. Arnold (ed.): Dynamical Systems V (Springer, Berlin, Heidelberg 1990)Google Scholar
  4. 6.4
    B.D. Hassard, N.D. Kazarinoff, Y.-H. Wan: Theory and Applications of Hopf Bifurcation (Cambridge University Press, Cambridge 1981)MATHGoogle Scholar
  5. 6.5
    J.E. Marsden, M. McCracken: The Hopf Bifurcation and Its Applications (Springer, Berlin, Heidelberg 1976)MATHCrossRefGoogle Scholar
  6. 6.6
    G. Ioss, D.D. Joseph: Elementary Stability and Bifurcation Theory (Springer, Berlin, Heidelberg 1980)Google Scholar
  7. 6.7
    S.N. Chow, J.K. Hale: Methods of Bifurcation Theory (Springer, Berlin, Heidelberg 1982)MATHCrossRefGoogle Scholar
  8. 6.8
    L.D. Landau: Dokl. Acad. Nauk. SSSR 44, 339–342 (1944)Google Scholar
  9. 6.9
    L.D. Landau, E.M. Lifshitz: Mechanics of Continuous Media (Gostekhizdat, Moscow 1954)Google Scholar
  10. 6.10
    E. Hopf: Comm. Pure Appl. Math. 1, 303–322 (1948)MathSciNetMATHCrossRefGoogle Scholar
  11. 6.11
    E. Hopf: In Proc. Conf. Diff. Eqs., Univ. of Maryland, 1956, pp. 49–57Google Scholar
  12. 6.12
    J.-P. Eckmann: Rev. Mod. Phys. 53, No. 4, 643–654 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 6.13
    D. Ruelle, F. Takens: Commun. Math. Phys. 20, 167–192 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 6.14
    S. Newhouse, D. Ruelle, F. Takens: Commun. Math. Phys. 64, 35–40 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 6.15
    A. Andronov, L. Pontryagin: Dokl. Akad. Nauk SSSR 14, 247–250 (1937)Google Scholar
  16. 6.16
    C. Grebogi, E. Ott, J.A. Yorke: Phys. Rev. Lett. 51, 339–342 (1983)MathSciNetADSCrossRefGoogle Scholar
  17. 6.17
    R.W. Walden, P. Kolodner, A. Ressner, C.M. Surko: Phys. Rev. Lett. 53, 242–245 (1984)ADSCrossRefGoogle Scholar
  18. 6.18
    C. Grebogi, E. Ott, J.A. Yorke: Physica D 15, 354–373 (1985)MathSciNetMATHCrossRefGoogle Scholar
  19. 6.19
    M.J. Feigenbaum, L.P. Kadanoff, S.J. Shenker: Physica D 5, 370–386 (1982)MathSciNetADSCrossRefGoogle Scholar
  20. 6.20
    S. Ostlund, D. Rand, J. Sethna, E. Siggia: Physica D 8, 303–342 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 6.21
    S.J. Shenker: Physica D 5, 405–411 (1982)MathSciNetADSCrossRefGoogle Scholar
  22. 6.22
    B. Hu: Phys. Lett. A 98, 79–82 (1983)MathSciNetADSCrossRefGoogle Scholar
  23. 6.23
    H.G. Schuster: Deterministic Chaos (Physik-Verlag, Weinheim 1984)MATHGoogle Scholar
  24. 6.24
    J.P. Gollub, H.L. Swinney: Phys. Rev. Lett. 35, 927–930 (1975)ADSCrossRefGoogle Scholar
  25. 6.25
    H.L. Swinney, J.P. Gollub: Physics Today 31, No. 8, 41–49 (1978)CrossRefGoogle Scholar
  26. 6.26
    S. Fauve, A. Libchaber: “Rayleigh-Benard experiment in a low Prandtl number fluid mercury”, in Chaos and Order in Nature, ed. by H. Haken (Springer, Berlin, Heidelberg 1981) pp. 25–35CrossRefGoogle Scholar
  27. 6.27
    H. Haken: Advanced Synergetics (Springer, Berlin, Heidelberg 1983)MATHGoogle Scholar
  28. 6.28
    O.E. Rossler: Phys. Lett. A 57, 397–398 (1976)ADSCrossRefGoogle Scholar
  29. 6.29
    D. Gurel, O. Gurel: Oscillations in Chemical Reactions (Springer, Berlin, Heidelberg 1983)Google Scholar
  30. 6.30
    J.P. Crutchfield, J.D. Farmer, N. Packard, R. Shaw, G. Jones, R.J. Donnely: Phys. Lett. A 76, 1–4 (1980)MathSciNetADSCrossRefGoogle Scholar
  31. 6.31
    B.A. Huberman, J.P. Crutchfield, N.H. Packard: Appl. Phys. Lett. 37, 750–752 (1980)ADSCrossRefGoogle Scholar
  32. 6.32
    B.A. Huberman, J.P. Crutchfield: Phys. Rev. Lett. 43, 1743–1747 (1979)ADSCrossRefGoogle Scholar
  33. 6.33
    J.P. Crutchfield, J.D. Farmer, B.A. Huberman: Phys. Rep. 92, 45–82 (1982)MathSciNetADSCrossRefGoogle Scholar
  34. 6.34
    B. Shraiman, C.E. Wayne, P.C. Martin: Phys. Rev. Lett. 46, 935–939 (1981)MathSciNetADSCrossRefGoogle Scholar
  35. 6.35
    Y. Pomeau, P. Manneville: Commun. Math. Phys. 74, 189–197 (1980)MathSciNetADSCrossRefGoogle Scholar
  36. 6.36
    P. Manneville, Y. Pomeau: Physica D 1, 219–226 (1980)MathSciNetADSCrossRefGoogle Scholar
  37. 6.37
    V.S. Afraimovich, L.P. Shilnikov: Dokl. Akad. Nauk SSSR 219, 1281–1285 (1974)MathSciNetGoogle Scholar
  38. 6.38
    L.P. Shilnikov, V.I. Luk’yanov: Dokl. Akad. Nauk SSSR 243, 23–29 (1978)MathSciNetGoogle Scholar
  39. 6.39
    B. Hu: “Functional renormalization group equations approach to the transition to chaos”, in Chaos and Statistical Methods, ed. by Y. Kuramoto (Springer, Berlin, Heidelberg 1984) pp. 72–82CrossRefGoogle Scholar
  40. 6.40
    B. Hu, J. Rudnick: Phys. Rev. Lett. 48, 1645–1648 (1982)MathSciNetADSCrossRefGoogle Scholar
  41. 6.41
    B. Hu, J. Rudnick: Phys. Rev. A 26, 3035–3036 (1982)MathSciNetADSCrossRefGoogle Scholar
  42. 6.42
    P. Berge, M. Dubois, P. Manneville, Y. Pomeau: J. Physique Lett. (Paris) 41, L341–L345 (1980)Google Scholar
  43. 6.43
    M. Dubois, M.A. Rubio, P. Berge: Phys. Rev. Lett. 51, 1446–1449 (1983)MathSciNetADSCrossRefGoogle Scholar
  44. 6.44
    C. Vidal: “Dynamical instabilities observed in the Belousov-Zhabotinsky system”, in Chaos and Order in Nature, ed. by H. Haken (Springer, Berlin, Heidelberg 1981) pp. 68–82Google Scholar
  45. 6.45
    Y. Pomeau, J.C. Roux, A. Rossi, C. Vidal: J. Physique Lett. (Paris) 42, L271–L272 (1981)Google Scholar
  46. 6.46
    W.L. Ditto, S. Rauseo, R. Cawley et al.: Phys. Rev. Lett. 63, 923–926 (1989)ADSCrossRefGoogle Scholar
  47. 6.47
    R.K. Tavakol, A.J. Tworkowski: Phys. Lett. A 126, 318–324 (1988)MathSciNetADSCrossRefGoogle Scholar
  48. 6.48
    J.-Y. Huang, J.J. Kim: Phys. Rev. A 36, 1495–1497 (1987)ADSCrossRefGoogle Scholar
  49. 6.49
    D.J. Biswas, Vas Dev, U.K. Chatterjee: Phys. Rev. A 35, 456–458 (1987)ADSGoogle Scholar
  50. 6.50
    K. Kaneko: Progr. Theor. Phys. 72, 202–215 (1984)ADSMATHCrossRefGoogle Scholar
  51. 6.51
    M.R. Bassett, J.L. Hudson: Physica D 35, 289–298 (1989)MathSciNetADSCrossRefGoogle Scholar
  52. 6.52
    K. Kaneko: Collapse of Tori and Genesis of Chaos in Dissipative Systems (World Scientific, Singapore 1986)MATHGoogle Scholar
  53. 6.53
    V.S. Anishchenko, T.E. Letchford, M.A. Safonova: Radiophys. and Quantum Electron. 27, 381–390 (1984)MathSciNetADSCrossRefGoogle Scholar
  54. 6.54
    A.I. Goldberg, Ya.G. Sinai, K.M. Khanin: Usp. Mat. Nauk 38, 159–160 (1983)Google Scholar
  55. 6.55
    B. Hu, I.I. Satija: Phys. Lett. A 98, 143–146 (1983)MathSciNetADSCrossRefGoogle Scholar
  56. 6.56
    H. Dadio: Progr. Theor. Phys. 70, 879–882 (1983)ADSCrossRefGoogle Scholar
  57. 6.57
    M. Sano, Y. Sawada: “Chaotic attractors in Rayleigh-Benard Systems”, in Chaos and Statistical Methods, ed. by Y. Kuramoto (Springer, Berlin, Heidelberg 1984) pp. 226–231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
    • 2
  • Alexander Yu. Loskutov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR
  2. 2.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations