Advertisement

Fractals

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)

Abstract

Strange attractors represent sets in phase space which are different from points, lines or pieces of (hyper)surfaces. To give an adequate description of these complex patterns, calls for the use of special geometric objects known as fractal sets.

Keywords

Fractal Dimension Lyapunov Exponent Fractal Pattern Smooth Manifold Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    B. Mandelbrot: Fractals: Form, Chance and Dimension (Freeman, San Francisco 1977)zbMATHGoogle Scholar
  2. 4.2
    B. Mandelbrot: The Fractal Geometry of Nature (Freeman, San Francisco 1982)zbMATHGoogle Scholar
  3. 4.3
    J. Feder: Fractals (Plenum, New York 1988)zbMATHGoogle Scholar
  4. 4.4
    T. Vicsek: J. Phys. A 16, L647–L652 (1983)MathSciNetADSCrossRefGoogle Scholar
  5. 4.5
    J. Feder, L. Hinrichsen, K.J. Maloy, T. Jossany: Physica D 38, 104–111 (1989)ADSCrossRefGoogle Scholar
  6. 4.6
    J. Hittman, G. Daccord, H.E. Stanley: “When viscous ‘fingers’ have fractal dimension?”, in Fractals in Physics, Proc. 6th Trieste Int. Symp. on Fractals in Physics, ITCP, Trieste, July 9-12, 1985, ed. by L. Pietronero, E. Tosatti (Elsevier, Amsterdam 1986)Google Scholar
  7. 4.7
    L.M. Sander: In Fractals in Physics, Proc. 6th Trieste Int. Symp. on Fractals in Physics, ITCP, Trieste, July 9-12, 1985, ed. by L. Pietronero, E. Tosatti (Elsevier, Amsterdam 1986)Google Scholar
  8. 4.8
    M. Henon: Commun. Math. Phys. 50, 69–77 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 4.9
    J.D. Farmer, E. Ott, J.A. Yorke: Physica D 7, 153–180 (1983)MathSciNetADSCrossRefGoogle Scholar
  10. 4.10
    A.N. Kolmogorov, V.M. Tikhomirov: Usp. Mat. Nauk. 14, 3–86 (1959)zbMATHGoogle Scholar
  11. 4.11
    P. Grassberger: Phys. Lett. A 97, 227–230 (1983)MathSciNetADSCrossRefGoogle Scholar
  12. 4.12
    H.G.E. Hentschel, I. Procaccia: Physica D 8, 435–444 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 4.13
    D. Ruelle, F. Takens: Commun. Math. Phys. 20, 167–192 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 4.14
    P. Grassberger, I. Procaccia: Physica D 9, 189–208 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 4.15
    D.A. Russel, J.D. Hanson, E. Ott: Phys. Rev. Lett. 45, 1175–1178 (1980)MathSciNetADSCrossRefGoogle Scholar
  16. 4.16
    J.L. Kaplan, J.A. Yorke: Chaotic Behavior of Multidimensional Difference Equations, Lecture Notes in Mathematics, Vol. 730 (Springer, Berlin, Heidelberg 1979) pp. 204–227Google Scholar
  17. 4.17
    J.D. Farmer: Physica D 4, 366–393 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 4.18
    L.-S. Young: Ergod. Theory and Dyn. Systems 2, 109–124 (1982)zbMATHCrossRefGoogle Scholar
  19. 4.19
    Ya.G. Sinai (ed.): Dynamical Systems II (Springer, Berlin, Heidelberg 1988)Google Scholar
  20. 4.20
    P. Constantin, C. Foias: Commun. Pure App. Math. 38, 1–27 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 4.21
    F. Ledrappier: Commun. Math. Phys. 81, 229–238 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
    • 2
  • Alexander Yu. Loskutov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR
  2. 2.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations