Strange Attractors

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)


In this chapter we begin the analysis of dissipative dynamical systems. In contrast to the Hamiltonian systems discussed earlier, these systems compress the phase volume. In dissipative dynamical systems (almost) all trajectories are asymtotically attracted with time to some limit sets of zero volume which are called attractors. Simple attractors are points, lines and (hyper)surfaces in the phase space. However, much more complex strange attractor are also possible.


Lyapunov Exponent Chaotic Motion Strange Attractor Lorenz System Invariant Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    A.J. Lichtenberg, M.A. Lieberman: Regular and Stochastic Motion (Springer, Berlin, Heidelberg 1983)zbMATHGoogle Scholar
  2. 3.2
    O.E. Lanford: “Strange attractors and turbulence”, in Hydrodynamic Instabilities and Transition to Turbulence, ed. by H.L. Swinney, J.P. Gollub (Springer, Berlin, Heidelberg 1981) pp. 7–31Google Scholar
  3. 3.3
    J.P. Eckmann: Rev. Mod. Phys. 53, 643–654 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 3.4
    J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (Springer, Berlin, Heidelberg 1983)Google Scholar
  5. 3.5
    V.I. Arnold, V.S. Afraimovich, Yu.S. Ilyashenko, L.P. Shilnikov: “Bifurcation theory”, in Dynamical Systems, Vol. 5, ed. by V.I. Arnold (Springer, Berlin, Heidelberg 1989)Google Scholar
  6. 3.6
    V.S. Afraimovich: “Attractors”, in Nonlinear Waves 1. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 14–28CrossRefGoogle Scholar
  7. 3.7
    J.M.T. Thompson, H.B. Stewart: Nonlinear Dynamics and Chaos (Wiley, New York 1986)zbMATHGoogle Scholar
  8. 3.8
    Ya.G. Sinai: “Stochasticity of dynamical Systems”, in Nonlinear Waves, ed. by A.V. Gaponov-Grekhov, M.I. Rabinovich (Nauka, Moscow 1979) pp. 192–212Google Scholar
  9. 3.9
    J. Milnor: Commun. Math. Phys. 99, 177–196 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 3.10
    S. Newhouse: Ann. N.Y. Acad. Sci. 357, 292–299 (1980)ADSCrossRefGoogle Scholar
  11. 3.11
    D. Ruelle, F. Takens: Commun. Math. Phys. 20, 167–192 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 3.12
    R. Shaw: Z. Naturforsch. A 36, 80–112 (1981)MathSciNetADSzbMATHGoogle Scholar
  13. 3.13
    V.S. Afraimovich, L.P. Shilnikov: “On strange attractors and quasiattractors”, in Nonlinear Dynamics and Turbulence (Pitman, Boston 1983) pp. 1–34Google Scholar
  14. 3.14
    E.N. Lorenz: J. Atmos. Sci. 20, 130–141 (1963)ADSCrossRefGoogle Scholar
  15. 3.15
    C. Sparrow: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors (Springer, Berlin, Heidelberg 1982)zbMATHCrossRefGoogle Scholar
  16. 3.16
    L.A. Bunimovich, Ya.G. Sinai: “Stochasticity of the attractor in the Lorenz model”, in Nonlinear Waves, ed. by A.V. Gaponov-Grekhov, M.I. Rabinovich (Nauka, Moscow 1979) pp. 212–226Google Scholar
  17. 3.17
    V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov: Dokl. Akad. Nauk SSSR 234, 336–339 (1977)MathSciNetADSGoogle Scholar
  18. 3.18
    J.A. Yorke, E.D. Yorke: J. Stat. Phys. 21, 263–277 (1979)MathSciNetADSCrossRefGoogle Scholar
  19. 3.19
    O.E. Lanford: “Computer pictures of the Lorenz attractor”, in Lecture Notes in Mathematics, Vol. 615 (Springer, Berlin, Heidelberg 1977) pp. 113–116Google Scholar
  20. 3.20
    S. Smale: Bull. Amer. Math. Soc. 73, 747–817 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 3.21
    R.F. Williams: Global Analysis. Amer. Math. Soc. 14, 361–393 (1970)Google Scholar
  22. 3.22
    A.N. Kolmogorov: Dokl. Akad. Nauk SSSR 119, 861–864 (1958)MathSciNetzbMATHGoogle Scholar
  23. 3.23
    A.N. Kolmogorov: Dokl. Akad. Nauk SSSR 124, 754–755 (1959)MathSciNetzbMATHGoogle Scholar
  24. 3.24
    Ya.G. Sinai: Dokl. Akad. Nauk SSSR 124, 768–771 (1959)MathSciNetzbMATHGoogle Scholar
  25. 3.25
    Yu.L. Klimontovich: Statistical Physics (Harwood, New York 1986)Google Scholar
  26. 3.26
    G. Benettin, L. Galgani, J.M. Strelcyn: Phys. Rev. A 14, 2338–2345 (1976)ADSCrossRefGoogle Scholar
  27. 3.27
    G. Benettin, C. Froeschle, J.P. Scheidecker: Phys. Rev. A 19, 2454–2460 (1979)MathSciNetADSCrossRefGoogle Scholar
  28. 3.28
    P. Hartman: Ordinary Differential Equations (Wiley, New York 1964)zbMATHGoogle Scholar
  29. 3.29
    I. Shimada, T. Nagascima: Progr. Theor. Phys. 61, 1605–1616 (1979)ADSzbMATHCrossRefGoogle Scholar
  30. 3.30
    S.D. Feit: Commun. Math. Phys. 61, 249–260 (1978)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 3.31
    G. Benettin, L. Galgani, A. Giogilli, J.M. Strelcyn: Meccanica 15, 9–31 (1980)ADSzbMATHCrossRefGoogle Scholar
  32. 3.32
    J.S. Turner, J.-C. Roux, W.D. McCormick, H.L. Swinney: Phys. Lett. A 85, 9–12 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
    • 2
  • Alexander Yu. Loskutov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR
  2. 2.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations