Unpredictable Dynamics

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)


At first glance it would appear that, when the dynamical equations of a system are known, we are able to accurately predict its state at any future moment in time. A closer examination, however, reveals the counter-example of molecular motion in gases. Although all the equations of motion of individual molecules and the laws of their collisions are known in this case, it is useless to solve these equations in an attempt to predict the precise positions and velocities of molecules at some future moment. The deterministic prediction fails in this case because of the extreme sensitivity of such a system to small variations in its initial conditions. The slightest perturbation in the coordinates and velocities of the molecules is sufficient to completely change their motion.


Phase Space Hamiltonian System Hamiltonian Function Canonical Transformation Phase Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    H. Goldstein: Classical Mechanics (Addison-Wesley Press, Cambridge 1951)Google Scholar
  2. 2.2
    E.T. Whittaker: Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, Cambridge 1961)Google Scholar
  3. 2.3
    P. Appell: Traité de Mécanique Rationnelle, Vols. 1 and 2 (Gauthier-Villars, Paris 1953)Google Scholar
  4. 2.4
    V.I. Arnold: Mathematical Methods of Classical Mechanics (Springer, Berlin, Heidelberg 1989)Google Scholar
  5. 2.5
    M. Henon, C. Heiles: Astron. J. 69, 73–79 (1964)MathSciNetADSCrossRefGoogle Scholar
  6. 2.6
    A.J. Lichtenberg, M.A. Lieberman: Regular and Stochastic Motion (Springer, Berlin, Heidelberg 1983)zbMATHGoogle Scholar
  7. 2.7
    P. Holmes: Physica D 5, 335–347 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 2.8
    R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky: Nonlinear Physics (Harwood, New York 1988)zbMATHGoogle Scholar
  9. 2.9
    G.M. Zaslavsky, R.Z. Sagdeev: Introduction to Nonlinear Physics (Nauka, Moscow 1988, in Russian)zbMATHGoogle Scholar
  10. 2.10
    A.N. Kolmogorov: Dokl. Akad. Nauk SSSR 98, 527–530 (1954)MathSciNetzbMATHGoogle Scholar
  11. 2.11
    V.I. Arnold: Usp. Mat. Nauk 18, 13–40 (1963)Google Scholar
  12. 2.12
    J.K. Moser: Nachr. Acad. Wiss. Gottingen, Math. Phys. K1 11a, 1–20 (1962)Google Scholar
  13. 2.13
    V.I. Arnold, A. Avez: Ergodic Problems of Classical Mechanics (Benjamin, New York 1968)Google Scholar
  14. 2.14
    J.K. Moser: Math. Ann. 169, 136–176 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 2.15
    V.I. Arnold: Dokl. Akad. Nauk SSSR 156, 9–12 (1964)MathSciNetGoogle Scholar
  16. 2.16
    B.V. Chirikov: Phys. Rep. 52, 263–379 (1979)MathSciNetADSCrossRefGoogle Scholar
  17. 2.17
    R.S. MacKay, J.D. Meiss, I.C. Percival: Transport in Nonlinear Systems (Queen Mary College, London 1983)Google Scholar
  18. 2.18
    P.J. Holmes, J.E. Marsden: J. Math. Phys. 23, 669–675 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 2.19
    A.N. Kolmogorov, S.V. Fomin: Elements of Function Theory and of Functional Analysis (Nauka, Moscow 1989)Google Scholar
  20. 2.20
    R. Balescu: Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York 1975)zbMATHGoogle Scholar
  21. 2.21
    Ya.G. Sinai: Dokl. Akad. Nauk SSSR 153, 1261–1264 (1963)Google Scholar
  22. 2.22
    Ya.G. Sinai: Usp. Mat. Mauk 25, 141–192 (1970)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
    • 2
  • Alexander Yu. Loskutov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR
  2. 2.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations