Neural Networks

  • Alexander S. Mikhailov
Part of the Springer Series in Synergetics book series (SSSYN, volume 51)


Neural networks are a special class of distributed active systems that consist of discrete two-state elements linked by long-range activatory and inhibitory connections. The applicability of these formal models to description of the actual neural net of the brain remains doubtful. They give what is probably no more than a rough sketch of the extremely complex processes involved in the operation of the brain. Nevertheless, one can easily construct artificial active networks with these properties. Furthermore, artificial neural networks can be used to perform analog information processing. To use them in this way, one needs to be able to engineer the networks to give them the desired activity patterns.


Back Propagation Spin Glass Input Pattern Associative Memory Hide Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    W.C. McCulloch, W. Pitts: Bull. Math. Biophys. 5, 115–133 (1943)MathSciNetMATHCrossRefGoogle Scholar
  2. 6.2
    M. Conrad: BioSystems 5, 1–14 (1972)CrossRefGoogle Scholar
  3. 6.3
    M. Conrad: Comm. ACM 28, 464–480 (1985)CrossRefGoogle Scholar
  4. 6.4
    JJ. Hopfield: Proc. Nat. Acad. Sci. USA 79, 2554–2558 (1982)MathSciNetADSCrossRefGoogle Scholar
  5. 6.5
    D.C. Hebb: The Organization of Behavior: A Neuropsycological Theory (Wiley, New York 1957)Google Scholar
  6. 6.6
    DJ. Amit, H. Gutfreund, H. Sompolinsky: Ann. Phys. (New York) 173, 30–67 (1987)ADSCrossRefGoogle Scholar
  7. 6.7
    T. Kohonen: Self-Organization and Associative Memory, Springer Ser. Information Sci. Vol. 8 (Springer, Berlin, Heidelberg 1988)MATHGoogle Scholar
  8. 6.8
    L. Personnaz, I. Guyon, G. Dreyfus: Phys. Rev. A34, 4217 (1987)MathSciNetADSGoogle Scholar
  9. 6.9
    S. Diederich, M. Opper: Phys. Rev. Lett. 50, 949 (1987)MathSciNetADSCrossRefGoogle Scholar
  10. 6.10
    W. Kmzel: Physica Scripta 39, 171–194 (1988)Google Scholar
  11. 6.11
    E. Gardner: J. Phys. A21, 256–270 (1988)ADSGoogle Scholar
  12. 6.12
    E. Gardner, B. Derrida: J. Phys. A21, 271 (1988)MathSciNetADSGoogle Scholar
  13. 6.13
    E. Gardner, N. Stroud, DJ. Wallace: Edinburgh Preprint 87/394Google Scholar
  14. 6.14
    W. Krauth, M. Meyard: J. Phys. A20, L745-L752 (1987)ADSGoogle Scholar
  15. 6.15
    G. Poppel, U. Krey: Europhys. Lett. 4, 979 (1987)ADSCrossRefGoogle Scholar
  16. 6.16
    M. Opper: Phys. Rev. Lett. 22, 235 (1988)Google Scholar
  17. 6.17
    H. Sompolinsky: Phys. Rev. A34, 2571–2574 (1986)ADSGoogle Scholar
  18. 6.18
    J.L. van Hemmen: Phys. Rev. A36, 1959 (1987)ADSGoogle Scholar
  19. 6.19
    B. Derrida, E. Gardner, A. Zippelius: Europhys. Lett. 4, 167 (1987)ADSCrossRefGoogle Scholar
  20. 6.20
    M.V. Tsodyks, M.V. Feigehnan: Europhys. Lett. 6, 101, 1988ADSCrossRefGoogle Scholar
  21. 6.21
    J J. Hopfield, D.W. Tank: “Collective computation with continuous variables”, in Disordered Systems and Biological Organization, ed. by E. Bienenstock et al. (Springer, Berlin, Heidelberg 1986)Google Scholar
  22. 6.22
    J.S. Denker: Physica 22D, 216–232 (1986)MathSciNetGoogle Scholar
  23. 6.23
    M.R. Garey, D.S. Johnson: Computers and Intractability (Freeman, San Francisco 1979)MATHGoogle Scholar
  24. 6.24
    S. Kirkpatrick, CD. Gelatt, M.P. Vecchi: Science 220, 671 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 6.25
    N. Metropolis, A.W. Rosenblueth, M.N. Rosenblueth, A.H. Teller: J. Chem. Phys. 6, 1087–1092 (1953)ADSCrossRefGoogle Scholar
  26. 6.26
    JJ. Hopfield, D.W. Tank: Biol. Cybem. 52, 141–152 (1985)MathSciNetMATHGoogle Scholar
  27. 6.27
    R. Durbin, DJ. Willshaw: Nature 326, 689–691 (1987)ADSCrossRefGoogle Scholar
  28. 6.28
    F. Rosenblatt:Principles of Neurodynamics (Spartan Books, New York 1959)Google Scholar
  29. 6.29
    D.E. Rumelhart, J.L. McClelland: “On learning the past tenses of English verbs”, in Parallel Distributed Processing, Vol.2, ed. by D.E. Rumelhart (MIT Press, Cambridge, MA 1986), pp. 216–271Google Scholar
  30. 6.30
    M. Minsky, S. Papert: Perceptrons (MIT Press, Cambridge, MA 1969)MATHGoogle Scholar
  31. 6.31
    D.E. Rumelhart, G.E. Hinton, RJ. Williams: Nature 323, 533–536 (1986)ADSCrossRefGoogle Scholar
  32. 6.32
    D.E. Rumelhart, G.E. Hinton, RJ. Williams: “Learning internal representations by error propagation”, in Parallel Distributed Processing, Vol.1, ed. by D.E. Rumelhart (MIT Press, Cambridge, MA 1986), pp. 318–362Google Scholar
  33. 6.33
    Y. Le Cun: “A learning scheme for asymmetric threshold networks”, in Proc. Int. Conf. Cognitiva 85 (Paris, 1985) pp. 599–604Google Scholar
  34. 6.34
    TJ. Sejnowski, P.K. Kienker, G.E. Hinton: Physica 220, 260–275 (1986)MathSciNetGoogle Scholar
  35. 6.35
    R.P. Gorman, TJ. Sejnowski: Neural Networks 1, 75–89 (1988)CrossRefGoogle Scholar
  36. 6.36
    S. Uhky, TJ. Sejnowski: Nature 333, 452–454 (1988)ADSCrossRefGoogle Scholar
  37. 6.37
    TJ. Sejnowski, C.R. Rosenberg: Complex Systems 1, 145–168 (1987)MATHGoogle Scholar
  38. 6.38
    N. Quian, TJ. Sejnowski: J. Molec. Biol. 202, 865–884 (1988)CrossRefGoogle Scholar
  39. 6.39
    G.E. Hinton, T J. Sejnowski: “Optimal perceptual inference”, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Washington, 1983) pp. 448–453Google Scholar
  40. 6.40
    G.E. Hinton, TJ. Sejnowski: “Learning and releaming in Boltzmann machines”, in Parallel Distributed Processing, Vol. 1, ed. by D.E. Rumelhart et al. (MIT Press, Cambridge, MA 1986) pp. 282–317Google Scholar
  41. 6.41
    R.W. Prager, T.D. Harrison, F. Fallside: Computer Speech and Language 1, 3–27 (1986)CrossRefGoogle Scholar
  42. 6.42
    P.K. Kienker, TJ. Sejnowski, G.E. Hinton, L.E. Schumacher: Perception 15, 197–216 (1986)CrossRefGoogle Scholar
  43. 6.43
    D.H. Acley, GJE. Hinton, TJ. Sejnovski: Cognitive Science 9, 147–169 (1985)CrossRefGoogle Scholar
  44. 6.44
    S. Amari: IEEE Trans. C-21, 1197–1206 (1972)MathSciNetGoogle Scholar
  45. 6.45
    D. Kleinfield: Proc. Nati. Acad. Sci. USA 83, 9469–9473 (1986)ADSCrossRefGoogle Scholar
  46. 6.46
    L. Personnaz, I. Guyon, G. Dreyfus: Phys. Rev. A34, 4217 (1986)MathSciNetADSGoogle Scholar
  47. 6.47
    H. Sompolinsky, I. Kanter: Phys. Rev. Lett. 57, 2861–2864 (1986)ADSCrossRefGoogle Scholar
  48. 6.48
    A. Herz, B. Sulzer, R. Kuhn, J.L. van Hemmen: Europhys. Lett. 7, 663–669 (1988)ADSCrossRefGoogle Scholar
  49. 6.49
    I. Guyon, L. Personnaz, J.P. Nadal, G. Dreyfus: Phys. Rev. A38, 6365–6372 (1988)MathSciNetADSGoogle Scholar
  50. 6.50
    J. Buhmann, K. Schulten: Europhys. Lett. 4, 1205–1209 (1987)ADSCrossRefGoogle Scholar
  51. 6.51
    H. Rieger, M. Schreckenberg, J. Zittarz: Z. Phys. B72, 523 (1988)ADSCrossRefGoogle Scholar
  52. 6.52
    A.S. Mikhailov, I.V. Mitkov, N.A. Sveshnikov: J. Nonlinear Biol. 1 (1990), in pressGoogle Scholar
  53. 6.53
    A.S. Mikhailov, I.V. Mitkov, N.A. Sveshnikov: BioSystems 23, 291–295 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR

Personalised recommendations