Pathophysiologie des Multiorganversagens

  • G. Schlag
  • H. Redl

Zusammenfassung

Das Multiorganversagen wird heutzutage als systemische Erkrankung angesehen, die im Zusammenhang mit gestörten Abwehrmechanismen des Organismus auftritt. Daher wurde auch vorgeschlagen, diese Erkrankung als „host defense failure“ zu bezeichnen. Das Versagen der Abwehrmechanismen läßt sich teilweise durch eine übermäßige Aktivierung verschiedener Mediatorsysteme (Eikosanoide, Zytokine etc.) erklären, die zu generalisierten Endothelzellschäden in verschiedenen vitalen (Lunge, Leber, Niere etc.) und auch nichtvitalen Organen führt. Als Folge dieser Zellschäden kommt es zu Permeabilitätsveränderungen und Ausbildung von Gewebsödemen mit schweren Beeinträchtigungen der Organfunktionen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aasen AO, Admundsen E, Hierulf P (1982) Significance of chromogenic peptide substrate assays in critical care medicine. Acta Chir Scand Suppl 509: 69–72PubMedGoogle Scholar
  2. 2.
    Abel FL (1989) Myocardial function in sepsis and endotoxin shock. Am J Physiol 257: R1265–R1281PubMedGoogle Scholar
  3. 3.
    Alexander JW, Boyce ST et al. (1990) The process of microbial translocation. Ann Surg 212: 496–512PubMedCrossRefGoogle Scholar
  4. 4.
    Arendshorst WJ, Finn WF, Gottschalk CW (1975) Pathogenesis of acute renal failure following renal ischemia in the rat. Circ Res 37: 558–562PubMedCrossRefGoogle Scholar
  5. 5.
    Baker JW, Deitch EA, Li M, Berg RD (1988) Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28: 896–906PubMedCrossRefGoogle Scholar
  6. 6.
    Bartels H, Reale E (1991) Early and late ultrastructural changes in the lungs of patients suffering from severe polytrauma. In: Sturm JA (ed) Adult Respiratory Distress Syndrome - An Aspect of Multiple Organ Failure. Springer, Berlin Heidelberg New York Tokyo, pp 265CrossRefGoogle Scholar
  7. 7.
    Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320: 584–588PubMedCrossRefGoogle Scholar
  8. 8.
    Boogaerts MA, Yamada O, Jacobs JS (1982) Enhancement of granulocyte endothelial cell adherence and granulocyte induced cytotoxicity by platelet release products. Proc Natl Acad Sci USA 79: 7019–7023PubMedCrossRefGoogle Scholar
  9. 9.
    Border JR, Hassett J, LaDuca J et al. (1987) The gut origin septic states in blunt multiple trauma (ISS = 40) in the ICU. Ann Surg 206: 427–448PubMedCrossRefGoogle Scholar
  10. 10.
    Bowton DL, Bertels NH, Prough DS, Stump DA (1989) Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med 17: 399–403PubMedCrossRefGoogle Scholar
  11. 11.
    Breslow MJ, Miller CF, Parker SD et al. (1988) Effect of vasopressors on organ blood flow during endotoxin shock in pigs. Am J Physiol 252: H291–H298Google Scholar
  12. 12.
    Carden DL, Smith JK, Zimmermann BJ et al. (1989) Reperfusion injury following circulatory collapse: the role of reactive oxygen metabolites. J Crit Care 4: 297–307CrossRefGoogle Scholar
  13. 13.
    Cook JA, Wise WC, Halushka PV (1981) Thromboxane A2 and prostacyclin production by lipopolysaccharide stimulated peritoneal macrophages. J Reticuloendothel Soc 20: 445–450Google Scholar
  14. 14.
    Cunnion RE, Schaer GL, Parker MM et al. (1986) The coronary circulation in human septic shock. Circulation 73: 637–644PubMedCrossRefGoogle Scholar
  15. 15.
    Danner RL, Elin RJ, Reilly JM et al. (1988) Endotoxemia in human septic shock. Crit Care Med 16: 397CrossRefGoogle Scholar
  16. 16.
    Dhainaut JF, Huyghebaert MF, Monsallier JF et al. (1987) Coronary hemodynamcis and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541PubMedCrossRefGoogle Scholar
  17. 17.
    Dinges HP, Redl H, Schlag G (1984) Quantitative estimation of granulocyte in the lung after polytrauma - dog and human autopsy data. Eur Surg Res 16: 100–101Google Scholar
  18. 18.
    Dittmer H, Jochum M, Fritz H (1986) Freisetzung von granulozytärer Elastase und Plasmaproteinveränderungen nach traumatisch hämorrhagischem Schock. Unfallchirurg 89: 160–169PubMedGoogle Scholar
  19. 19.
    Dunham CM, Siegel JH, Weireter L et al. (1991) Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med 19: 231–243PubMedCrossRefGoogle Scholar
  20. 20.
    Edmiston CE Jr, Condon RE (1991) Bacterial translocation. Surg Gynecol Obstet 173: 73–83PubMedGoogle Scholar
  21. 21.
    Edwards RL, Rickles FR (1984) Macrophage procoagulants. Prog Haemostasis Thromb 7: 183–209Google Scholar
  22. 22.
    Godin DV, Wright JM, Tuchek JM, Scudamore CH (1983) Plasma lysosomal enzymes in experimental and clinical endotoxemia. Clin Invest Med 6: 319–325PubMedGoogle Scholar
  23. 23.
    Goris RJA (1989) Multiple organ failure: whole body inflammaton? Schweiz Med Wochenschr 119: 347–353PubMedGoogle Scholar
  24. 24.
    Gottlieb ME, Sarfeh IJ, Stratton H et al. (1983) Hepatic perfusion and splanchnic oxygen consumption in patients post injury. J Trauma 23: 836–843PubMedCrossRefGoogle Scholar
  25. 25.
    Guthrie LA, McPhail LC, Henson PM, Johnston RB (1984) The priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide: evidence for increased activity of the superoxide producing enzyme. J Exp Med 160: 1656–1671PubMedCrossRefGoogle Scholar
  26. 26.
    Hallström S, Koidl B, Müller U et al. (1991) A cardiodepressant factor isolated from blood Cat’ current in cardiomyocytes. Am J Physiol 260: H869–H876PubMedGoogle Scholar
  27. 27.
    Harlan JM, Killes PD, Snecal F (1985) The role of neutrophil membrane glycoprotein GP- 150 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178PubMedGoogle Scholar
  28. 28.
    Haslett C, Guthrie LA, Kopaniak MM et al. (1985) Modulation of multiple neutrophil functions by preparative methods of trace concentrations of bacterial lipopolysaccharide. Am J Pathol 119: 101–110PubMedGoogle Scholar
  29. 29.
    Hassenstein J, Riede UN, Mittermayer C, Sandritter W (1980) Zur Frage der Reversibilität der schockinduzierten Lungenfibrose. Anaesthesiol Intensivther Notfallmed 15: 340–349CrossRefGoogle Scholar
  30. 30.
    Haye-Legrand I, Dulioust A, Vivier E (1986) Production of PAF-acether and leukotrienes by cultured mouse macrophages. Pharmacol Res Commun 18: 239–242PubMedCrossRefGoogle Scholar
  31. 31.
    Heidemann M, Norder-Hansson B, Bengton A (1988) Terminal complement complexes and anaphylatoxins in septic and ischemic patients. Arch Surg 123: 188–192CrossRefGoogle Scholar
  32. 32.
    Inci H, Mori W (1986) Fatal hepatic necrosis after shock. Acta Pathol Jpn 36: 363–374Google Scholar
  33. 33.
    Jafri SM, Lavine S, Field BE, Bahorozian MT, Carlson RW (1990) Left ventricular diastolic function in sepsis. Crit Care Med 18: 709–714PubMedCrossRefGoogle Scholar
  34. 34.
    Jarasch ED, Bruder G, Heid HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand Suppl 548: 39–46PubMedGoogle Scholar
  35. 35.
    Jeppsson B, Freund HR, Gimmon Z et al. (1981) Blood-brain barrier derangement in sepsis: cause of septic en- 53. cephalopathy? Am J Surg 141: 136–142PubMedCrossRefGoogle Scholar
  36. 36.
    Joka T, Obertacke U, Sturm JA et al. (1990) Startreaktionen des traumatischen Schocks: Zelluläre Reaktio- 54. nen. Hefte Unfallheilkd 212: 45–53Google Scholar
  37. 37.
    Kampschmidt RF (1984) Infection, inflammation, and interleukin-1. Lymphokine Res 2: 97–104Google Scholar
  38. 38.
    Kellar GA, West MA, Cerra FB, Simmons RL (1985) 55. Multiple system organ failure. Modulation of hepatocyte protein synthesis by endotoxin activated Kupffer cells. Ann Surg 201: 87–95Google Scholar
  39. 39.
    Liu MS, Zhang JN (1985) Glycolytic and tricarboxylic acid cycle intermediates in dog livers during endotoxic shock. Biochem Med 34: 335–343 40.Google Scholar
  40. 40.
    Luderitz T, Schade U, Rietschel ET (1986) Formation and metabolism of leukotriene C4 in macrophages exposed to bacterial lipopolysacchardie. Eur J Biochem 57. 155: 377–382CrossRefGoogle Scholar
  41. 41.
    Luscinskas FW, Cybulsky MI, Kiely JM et al. (1991) Cytokine-activated human endothelial monolayers support 58. enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-3. I Immunol 146: 59. 1617–1625Google Scholar
  42. 42.
    Martin BA, Wright JL, Thommasen H, Hogg JC (1982) Effect of pulmonary blood flow on the exchange between the circulating and marginating pool of polymorphonuclear leukocytes in dog lungs. J Clin Invest 69: 1277–1285PubMedCrossRefGoogle Scholar
  43. 43.
    Marzella LL, Trump BF (1987) Cell injury and its mean- 60. ing in shock and resuscitation. In: Siegel JH (ed) Trauma, emergency surgery and critical care. Churchill Livingstone, New York, pp 35Google Scholar
  44. 44.
    McCord JM ( 1987 Oxygen-derived radicals: a link bet- 61. ween reperfusion injury and inflammation. Fed Proc 46: 2402–2406PubMedGoogle Scholar
  45. 45.
    McEver RP (1991) Selectins: Novel receptors that medi- 62. ate leukocyte adhesion during inflammation. Thromb Haemostas 65: 223–228Google Scholar
  46. 46.
    Meakins JL, Marshall JC (1986) Multi-organ-failure syndrome. The gastrointestinal tract: the „motor“ of 63. MOF. Arch Surg 121: 196–208Google Scholar
  47. 47.
    Mittermayer C, Hassenstein J, Riede UN (1978) Is shock-induced lung fibrosis reversible? Pathol Res Pract 64. 162: 73–87CrossRefGoogle Scholar
  48. 48.
    Molvig J, Baek L, Christensen P et al. (1988) Endotoxin 65. stimulated human monocyte secretion of interleukin 1, tumour necrosis factor alpha, and prostaglandin E2 shows stable interindividual differences. Scand J Immu- 66. nol 27: 705–716CrossRefGoogle Scholar
  49. 49.
    Moore KL, Varki A, McEver RP (1991) GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence of a lectin-like interaction. J Cell Biol 112: 491–499PubMedCrossRefGoogle Scholar
  50. 50.
    Müller U, Hallström S, Koidl B et al. (1989) Wirkung einer kardiodepressiven Fraktion ( CDF) aus dem Plasma von Hunden im Schock der Herzmuskelzellkulturen. Intensivmed Suppl 1: 45–49Google Scholar
  51. 51.
    Müller-Berghaus G, Niepoth M, Rabens-Alles B (1984) Normal antithrombin III activity and concentration in experimental disseminated intravascular coagulation. Scand J Clin Lab Invest Suppl 178: 107–113Google Scholar
  52. 52.
    Neumann C, Sturm JA, Regel G (1991) Clinical definition of ARDS - An index based on bedside-derived parameters. In: Sturm JA (ed) Adult respiratory distress syndrome - an aspect of multiple organ failure. Springer, Berlin Heidelberg New York Tokyo, pp 30CrossRefGoogle Scholar
  53. 53.
    Nuytinck JKS, Goris RJA, Redl H et al. (1986) Post-traumatic complications and inflammatory mediators. Arch Surg 121: 886–890PubMedCrossRefGoogle Scholar
  54. 54.
    Pabst MJ, Johnston RB (1980) Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J Exp Med 151: 101–114PubMedCrossRefGoogle Scholar
  55. 55.
    Parrillo JE, Burch C, Shekhamer J et al. (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76: 1439–1553CrossRefGoogle Scholar
  56. 56.
    Phillips ML, Nudelman E, Gaeta FCA et al. (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand sialyl Le. Science 250: 1130–1132PubMedCrossRefGoogle Scholar
  57. 57.
    Pinsky MR, Matuschak GM (1990) A unifying hypotheses of multiple systems organ failure: Failure of host defense homeostasis. J Crit Care 5: 108–114Google Scholar
  58. 58.
    Pretorius JP, Schlag G, Redl H et al. (1987) The ‘lung in shock’ as a result of hypovolemic-traumatic shock in baboons. J Trauma 27: 1344–1353PubMedCrossRefGoogle Scholar
  59. 59.
    Redl H, Dinges HP, Schlag G (1987) Quantitative estimation of leukostasis in the posttraumatic lung -canine and human autopsy data. In: Schlag G, Redl H (ed) Progress in Clinical and Biological Research, vol 236-A: First Vienna Shock Forum - Pathophysiological Role of Mediators and Mediator Inhibitors in Shock. Alan R Liss, New York, pp 43Google Scholar
  60. 60.
    Redl H, Hammerschmidt DE, Schlag G (1983) Augmentation by platelets of granulocyte aggregation in response to chemotaxins: studies utilizing an improved cell preparation technique. Blood 61: 125–131PubMedGoogle Scholar
  61. 61.
    Redl H, Schlag G, Thurnher M et al. (1989) Cardiovascular reaction pattern during endotoxin or peptidoglycan application in awake sheep. Circ Shock 28: 101–108PubMedGoogle Scholar
  62. 62.
    Regel G, Sturm JA, Pape HC et al. (1991) Das Multiorganversagen (MOV). Ausdruck eines generalisierten Zellschadens aller Organe nach schwerem Trauma. Unfallchirurg 94: 487–497PubMedGoogle Scholar
  63. 63.
    Risberg B, Medegard A, Heidemann M et al. (1986) Early activation of humoral proteolytic systems in patients with multiple trauma. Crit Care Med 14: 917–256PubMedCrossRefGoogle Scholar
  64. 64.
    Ruchti C (1986) Pathomorphologische Befunde nach Intensivtherapie. Schweiz Med Wochenschr 116: 694–698PubMedGoogle Scholar
  65. 65.
    Rush BF, Sori AJ, Murphy TF et al. (1988) Endotoxemia and bacteremia during hemorrhagic shock. Ann Surg 207: 549–554PubMedCrossRefGoogle Scholar
  66. 66.
    Schlag G, Davies J, Redl H et al. (1991) A subchronic model of live bacteria sepsis in baboons. Circ Shock 34: 61Google Scholar
  67. 67.
    Schlag G, Redl H (1980) Die Leukostase beim hypovolämisch-traumatischen Schock. Anästhesist 29: 606–612Google Scholar
  68. 68.
    Schlag G, Redl H (1985) Morphology of the human lung after traumatic injury. In: Zapol WM, Falke KJ (eds) Acute respiratory failure. Marcel Dekker, New York Basel, pp 161Google Scholar
  69. 69.
    Schlag G, Redl H (1986) Oxygen radicals in hypovolemic-traumatic shock. In: Novvelli GP, Ursini T (eds) Oxygen free radicals in shock. International Workshop Florence 1985, Karger, Basel, pp 94Google Scholar
  70. 70.
    Schlag G, Redl H (1991) Postoperative and traumatic 78. sepsis-like syndrome: a new understanding. Acute Care 14–15: 244–269Google Scholar
  71. 71.
    Schlag G, Redl H, Davies J (1991b) TNF- antibodies (CB0006) in a subchronic septic model in baboons to 79. prevent multi-organ failure ( MOF ). Circ Shock 34: 164–165Google Scholar
  72. 72.
    Schlag G, Redl H, Dinges HP et al. (1991) Bacterial translocation in a baboon model of hypovolemic-trau- 80. matie shock. In: Schlag G, Redl H, Siegel JH (eds) Shock, sepsis and organ failure. Second Wiggers Bernard Conference, May 27–30, 1990. Schloß Dürnstein, Austria. Springer, Berlin Heidelberg New York Tokyo, pp 54Google Scholar
  73. 73.
    Schlag G, Redl H, Hallström S (1991) The cell in shock: the origin of multiple organ failure. Resuscitation 21: 137–180PubMedCrossRefGoogle Scholar
  74. 74.
    Schlag G, Voigt WH, Schnells G, Glatzl A (1976) Die Ultrastruktur der menschlichen Lunge im Schock. I. Anästhesist 25: 512–521Google Scholar
  75. 75.
    Schorer AE, Rick PD, Swaim WR, Moldow CF (1985) Structural features of endotoxin required for stimulation of endothelial cell tissue factor production. Exposure of preformed tissue factor after oxidant-mediated endotheliai cell injury. J Lab Clin Med 106: 38–42Google Scholar
  76. 76.
    Schwartz BS, Monroe MC (1986) Human platelet aggregation is initiated by peripheral blood mononuclear cellsexposed to bacterial lipopolysaccharide in-vitro. I Clin Invest 78: 1136–1141CrossRefGoogle Scholar
  77. 77.
    Seekamp A, Regel G, Sturm JA, Tscherne H (1991) Das Leberversagen als Teil eines Multiorganversagens nach Polytrauma. Unfallchirurg 94: 502–507PubMedGoogle Scholar
  78. 78.
    Smedly LA, Tonnesen MG, Sandhaus RA et al. (1986) Neutrophil mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J Clin Invest 77: 1233–1243PubMedCrossRefGoogle Scholar
  79. 79.
    Stahl WM (1987) Management of acute renal failure after trauma. In: Siegel JH (ed) Trauma — Emergency Surgery & Critical Care, Churchill Livingstone, New York, pp 719Google Scholar
  80. 80.
    Traber DL, Redl H, Schlag G et al. (1988) Cardiopulmonary responses to continuous administration of endotoxin. Am J Physiol 254: H833–H839PubMedGoogle Scholar
  81. 81.
    Tracey KJ, Beutler B, Lowrey SF et al. (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474PubMedCrossRefGoogle Scholar
  82. 82.
    Varga T, Reffy A, Vandor E (1980) Myocardial lesions in hemorrhagic hypotension. Z Rechtsmed 84: 99–112PubMedCrossRefGoogle Scholar
  83. 83.
    Walvatne C, Cerra FB (1990) Hepatic dysfunction in multiple organ failure. In: Deitch EA (ed) Multiple organ failure — Pathophysiology and basic concepts of therapy. Thieme Medical, New York, pp 241Google Scholar
  84. 84.
    Wells CL, Jechorek RP, Erlandsen SL (1990) Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J Infect Dis 162: 82–90PubMedCrossRefGoogle Scholar
  85. 85.
    Werdan K, Boekstegers P, Müller U et al. (1991) Akute septische Kardiomyopathie: Bestandteil des Multiorganversagens in der Sepsis? Med Klin 86: 526–534Google Scholar
  86. 86.
    Zilow G, Burger R, Redl H (1991) Prognostic value of complement activation products in polytrauma patients. Cire Shock 34: 76Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Schlag
  • H. Redl

There are no affiliations available

Personalised recommendations