Wavelets pp 139-146 | Cite as

Use of Wavelet Transforms in the Study of Propagation of Transient Acoustic Signals Across a Plane Interface Between Two Homogeneous Media

  • S. Ginette
  • A. Grossmann
  • Ph. Tchamitchian
Conference paper
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)


The problem we study can be defined as follows: In three-dimensional space, we consider two homogeneous media — “air” and “water” — separated by plane interface. There is a point source of sound in “air” at height h above the interface. Its emission is given by a function F(t) of time. We are interested in the behaviour of pressure in water, at time t, depth z, and distance r from a vertical line going through the source.


Attenuation Refraction Geophysics Acoustics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gerjuoy, E., Refraction of Waves from a point source into a Medium of Higher Velocity, Phys. Rev. 73 (1948) 1442–1449.MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    Brekhovskikh, L. N., Waves In layered Media (Wiley. New York) 1960, pp. 292–302.Google Scholar
  3. [3]
    Gottlieb, P., Sound Source near a Velocity Discontinuity, J. Acoust. Soc. Am. 32 (1960) 1117–1122.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Towne, D. H., Pulse shapes of Spherical Waves Reflected and Refracted at a Plane Interface separating Two homogeneous Fluids, J. Acoust. Soc. Am. 44 (1968) 65–76.ADSMATHCrossRefGoogle Scholar
  5. [5]
    De Hoop, A. T. and Van Der Hijden, J., Generation of Acoustic Waves by an Impulse point Source in a fluid/solid configuration with a Plane boundary, J. Acoust. Soc. Am. 75 (1984) 1709–1715.ADSCrossRefGoogle Scholar
  6. [6]
    Casserau, D., Nouvelles Méthodes et Applications de la Propagation Transitoire dans les milieux Fluides et Solides, Thèse de l’U. E. R. Paris VII (1988).Google Scholar
  7. [7]
    Saracco G., Transmission acoustique à travers le dioptre air-eau, J. Acoust. (1988) 1 71–79.Google Scholar
  8. [8]
    Grossmann, A. and Morlet, J., Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journ. of Math. Analysis, 15(1984) 723–736.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Grossmann, A., Saracco, G., Tchamitchian, P., Study of propagation of transient acoustic signals across a plane interface with the help of the wavelet transform, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • S. Ginette
    • 1
  • A. Grossmann
    • 2
  • Ph. Tchamitchian
    • 3
  1. 1.Laboratoire de Mécanique et d’Acoustique, Equipe UltrasonsC.N.R.S.Marseille Cedex 09France
  2. 2.Centre de Physique Théorique, Section IIC.N.R.S.Marseille Cedex 09France
  3. 3.Faculté des Sciences et Techniques de Saint-GérômeC.P.T.Marseille Cedex 13France

Personalised recommendations