Advertisement

Wavelets pp 68-98 | Cite as

Some Aspects of Non-Stationary Signal Processing with Emphasis on Time-Frequency and Time-Scale Methods

  • P. Flandrin
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)

Abstract

The analysis and the processing of nonstationary signals call for specific tools which go beyond Fourier analysis. This paper is intended to review most of the Signal Processing methods which have been proposed in this direction. Emphasis is put on time-frequency representations and on their time-scale versions which implicitly make use of “wavelet” concepts. Relationships between Gabor expansion, wavelet transform and ambiguity functions are detailed by considering signal decomposition as a detection-estimation problem. This permits one to make more precise some of the links which exist between time-frequency and time-scale.

Keywords

Wigner Distribution Ambiguity Function Signal Proc Signal Decomposition Nonstationary Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.M.S.S. Abeysekera, R.J. Bolton, L.C. Westphal, B. Boashash, “Patterns in Hilbert Transforms and Wigner-Ville Distributions of Electrocardiogram Data”, IESF Int. Conf. on Acousl, Speech and Signai Proc. ICASSP-86, Tokyo, pp. 1793–1796, 1986.Google Scholar
  2. [2]
    J.B. Allen, L.R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and Synthesis”, 65 (11), pp. 1558–1564, 1977.Google Scholar
  3. [3]
    R.A. Altes, “Some Invariance Properties of the Wide-Band Ambiguity Function”, J. Acoust. Soc. Am., 53 (4), pp. 1154–1160.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R.A. Altes, “Sonar for Generalized Target Description and its Similarity to Animal Echolocation Systems”. J. Acousl Soc. Am., 59(1), pp. 97–105, 1976.ADSCrossRefGoogle Scholar
  5. [5]
    R.A. Altes, “The Fourier-Mellin Transform and Mammalian Hearing”, J. AcousL Soc, Am., 63 (l), pp. 174–183. 1978.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    R.A. Altes, “Detection, Estimation and Classification with Spectrograms”, J. Acoust. Soc Am., 67 (4), pp. 1232–1246, 1980.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    R.A. Altes, “Overlapping Windows and Signal Representations on the Time-Frequency Plane”, Coll. Int. CNRS “Systemes Sonar Aériens Animaux: Traitement et Analyse des Signaux”, Lyon, pp. 17.1–17.47, 1985.Google Scholar
  8. [8]
    R. Balian. “Un Principe d’Incertitude Fort en Théorie du Signal ou en Mécanique Quantique”, Comptes Rendus II, 292 (20), pp. 1357–1362, 1981.MathSciNetGoogle Scholar
  9. [9]
    M. Basseville, A. Benveniste (eds.), Detection of Abrupt Changes in Signais and Dynamicai Systems (Lecture Notes in Control and Information Sciences 77). Springer Verlag. New York. 1986.Google Scholar
  10. [10]
    M.J. Bastiaans, “Gabor’s Expansion of a Signal into Gaussian Elementary Signals”, Proc. IEEE, 68(4), pp. 538–539, 1980.CrossRefGoogle Scholar
  11. [11]
    M.J. Bastiaans, “Gabor’s Signal Expansion and Degrees of Freedom of a Signal”, Opt. Acta, 29 (9). pp. 1223–1229. 1982.MathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Benveniste, “Design of Adaptive Algorithms for the Tracking of Time-Varying Systems”, Int J. of Adaptive Control and Signal Proc., 1 (1), pp. 3–29, 1987.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    A. Berthon, “Fonctions d’Ambiguité Généralisées et Synthèse de Signaux d Ambiguité Donnée”, 11ème Coll GRETSI sur le Traitement du Signal et des Images. Nice. pp. 157–160. 1987.Google Scholar
  14. [14]
    J. Bertrand. P. Bertrand. “Représentations Temps-Fréquence des Signaux”. Comptes Rendus II. 299 (13). pp. 635–638. 1984.MathSciNetMATHGoogle Scholar
  15. [15]
    P. Bertrand. J. Bertrand. “Représentation Temps-Fréquence des Signaux à Large Bande”, La Recherche Aérospatiale, 5. pp. 111 1985.MATHGoogle Scholar
  16. [16]
    P. Bertrand, F. Tardivel, “Représentation Temps-Fréquence des Signaux et Transformations Affines sur le Temps — Application à un Problème d’Imagerie Radar”, 10ème Coll. GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 7–12, 1985.Google Scholar
  17. [17]
    A. Blanc-Lapierre, B. Picinbono, “Remarques sur la Notion de Spectre Instantané de Puissance”, Publ Sci Univ. Alger B, 1, pp. 2–32, 1955.Google Scholar
  18. [181.
    A. Blanc-Lapierre, B. Picinbono, Fonctions Aléatoires, Masson, Paris. 1981.MATHGoogle Scholar
  19. [19]
    B. Bouachache, “Représentation Temps-Fréquence — Application à la Mesure de l’Absorption du Sous-Sol”, Thèse Doct.-Ing., INPG, Grenoble, 1982.Google Scholar
  20. [20]
    B. Bouachache, E. de Bazelaire, “Reconnaissance des Formes dans le Plan Temps-Fréquence à l’Aide de la Représentation de Wigner-Ville”. 9éme Coll. GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 879–884. 1983.Google Scholar
  21. [21]
    G.F. Boudreaux-Bartels. “Time-Varying Signal Processing Using the Wigner Distribution Time-Frequency Signal Representation”, in: Advances in Geophysical Data Processing, 2. pp. 33–79, Jai Press Inc., 1985.Google Scholar
  22. [22]
    G.F. Boudreaux-Bartels, T.W. Parks, “Time-Varying Filtering and Signal Estimation Using Wigner Distribution Synthesis Techniques”, IEEE Trans on Acoust, Speech and Signal. ASSP-34 (3). pp. 442–451. 1986.MathSciNetCrossRefGoogle Scholar
  23. [23]
    C. Braccini, G. Gambardella, “Form-Invariant Linear Filtering: Theory and Applications”, IEEE Trans on Acoust, Speech and Signal Proc., ASSP-34 (6), pp. 1612–1627, 1986.CrossRefGoogle Scholar
  24. [24]
    M. Chiollaz, P. Flandrin. N. Gache. “Utilisation de la Représentation de Wigner-Ville Comme Outil de Diagnostic des Défauts de Fonctionnement des Moteurs Thermiques”, lléme Coll. GRETSI sur le Traitement du Signal et des Images, Nice, pp. 579–582, 1987.Google Scholar
  25. [25]
    C. Chouzenoux, “Analyse Spectrale à Résolution Variable — Application au Signal Parole”, Thèse Doct.-Ing., ENST-SYC, Paris. 1982.Google Scholar
  26. [26]
    T.A.CM. Claasen, W.F.G. Mecklenbräuker, “The Wigner Distribution — A Tool for Time-Frequency Signal Analysis. Part I: Continuous-Time Signals”, Philips J. Res. 35 (3). pp. 217–250, 1980.MathSciNetMATHGoogle Scholar
  27. [27]
    T.A.CM. Claasen, W.F.G. Mecklenbrauker. “The Wigner Distribution — A Tool for Time-Frequency Signal Analysis. Part II: Discrete-Time Signals”. Philips J. Res. 35 (4/5), PP 276–300. 1980.MathSciNetMATHGoogle Scholar
  28. [28]
    T.A.CM. Claasen. W.F.G. Mecklenbrauker, “The Wigner Distribution — A Tool for Time-Frequency Signal Analysis. Part III: Relations with Other Time-Frequency Signal Transformations”, Philips J. Res, 35 (6), pp. 372–389, 1980.MathSciNetMATHGoogle Scholar
  29. [29]
    L. Cohen, “Generalized Phase-Space Distribution Functions”, J. Math Phys. 7 (5). pp. 781–786, 1966.ADSCrossRefGoogle Scholar
  30. [30]
    L. Cohen, T.E. Posch, “Positive Time-Frequency Distribution Functions”, IEEE Trans on Acoust., Speech and Signal Proc., Assp-33 (1). pp. 31–38, 1985.CrossRefGoogle Scholar
  31. [31]
    I. Daubechies, A. Grossmann, Y. Meyer, “Painless Nonorthogonal Expansions”, J. Math Phys, 27 (5) pp. 1271–1283. 1985.MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analysis”, preprint, 1987.Google Scholar
  33. I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets”, preprint.Google Scholar
  34. [34]
    E. Daymier. F. Castanié, “Analyse d une Méthode de Détection des Sauts de Moyenne de Variance”, 10ème Coll GRETSI sur le Traitement du Signal et ses Applications, Nice. pp. 131–136. 1985.Google Scholar
  35. [35]
    B. Escudié, “Représentation en Temps et Fréquence des Signaux d’Energie Finie: Analyse et Observation des Signaux”, Ann Télécomm., 35 (3–4). pp. 101–111, 1979.Google Scholar
  36. [36]
    R.M. Fano, “Short-Time Autocorrelation Functions and Power Spectra”, J. Acoust. Soc. Am., 22 (5), pp. 546–550, 1950.ADSCrossRefGoogle Scholar
  37. [37]
    J.L. Flanagan, Speech Analysis, Synthesis and Perception, Springer-Verlag, Berlin, 1972.Google Scholar
  38. [38]
    P. Flandrin, B. Escudié, “Sur une Relation Intégrale Entre les Fonctions d’Ambiguité en Translation et en Compression”, Rapport Interne ICPI TS-8110, 1981.Google Scholar
  39. [39]
    P. Flandrin. W. Martin, “Sur les Conditions Physiques Assurant l’Unicité de la Représentation de Wigner-Ville Comme Représentation Temps-Fréquence”, 9ème Coll GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 43–49, 1983.Google Scholar
  40. [40]
    P. Flandrin, “Some Features of Time-Frequency Representations of Multicomponent Signals”, IEEE Int. Conf. on Accusi, Speech and Signal Proc. ICASSP-S4, San Diego (CA), pp. 41B.4.1–41B.4.4, 1984.Google Scholar
  41. [41]
    P. Flandrin, B. Escudié, “Principe et Mise en Oeuvre de l’Analyse Temps-Fréquence par Transformation de Wigner-Ville, Traitement du Signal”, 2 (2). pp. 143–151, 1985.Google Scholar
  42. [42]
    P. Flandrin, “Représentations Temps-Fréquence des Signaux Non-Stationnaires”, Thèse Doct. Etat, INPG, Grenoble, 1987.Google Scholar
  43. [43]
    P. Flandrin, “A Time-Frequency Formulation of Optimum Detection”, IEEE Trans, on Acoust, Speech and Signal Proc., to appear 1988.Google Scholar
  44. [44]
    P. Flandrin, “On the Spectrum of Fractional Brownian Motions”, IEEE Trans on Info Theory, to appear 1988.Google Scholar
  45. [45]
    A. Freedman, “A Mechanism of Acoustic Echo Formation”, Acustica, 12, pp. 10–21, 1962.MathSciNetMATHGoogle Scholar
  46. [46]
    B. Friedlander, B. Porat, “Detection of Transient Signals by the Gabor Representation”, IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-87, Dallas (TX), pp. 40.1.1–40.1.4, 1987.Google Scholar
  47. [47]
    D. Gabor. “Theory of Communication”, J. IEE, 93 (III), pp. 429–457.Google Scholar
  48. [48]
    G. Gambardella. “Time-Scaling and Short-Time Spectral Analysis”. J. Acoust Soc. Am., 44 (6). pp. 1745–1747, 1968.ADSCrossRefGoogle Scholar
  49. [49]
    G. Gambardella. “A Contribution to the Theory of Short-Time Spectral Analysis with Nonuniform Bandwidth Filters”. IEEE Trans on Circuit Theory, CT-18 (4), pp. 455–460. 1971.CrossRefGoogle Scholar
  50. [50]
    W. Gersh, C. Kitagawa, “A Smoothness Priors Time-Varying AR Coefficient Modeling of Nonstationary Covariance Time Series”, IEEE Trans on Auto. Control, AC-30 (1). pp. 48–57, 1985.Google Scholar
  51. [51]
    Y. Grenier, “Time-Dependent ARMA Modeling of Non-Stationary Signals”. IEEE Trans on Acoust., Speech and Signal Proc., ASSP-31 (4), pp. 899–911, 1983.CrossRefGoogle Scholar
  52. [52]
    Y. Grenier, “Modélisation de Signaux Non-Stationnaires”, Thèse Doct. Etat, Univ. Paris-Sud. Orsay, 1984.Google Scholar
  53. [53]
    Y. Grenier, “Parametric Time-Frequency Representations”, in: Traitement du Signal/Signal Processmg (J.L. Lacoume, T.S. Durrani, R. Stora, eds.), Les Houches, Session XLV, pp. 339–397, North-Holland, Amsterdam, 1985.Google Scholar
  54. [54]
    A. Grossmann, J. Morlet. “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape”, SIAM J. Math Anal., 15 (4). pp. 723–736, 1984.MathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    C. Gueguen, “Analyse de la Parole par les Méthodes de Modélisation Paramétrique”, Ann. Télécomm., 40 (5–6), pp. 253–269.Google Scholar
  56. [56]
    CW. Helström, “An Expansion of a Signal in Gaussian Elementary Signals”, IEEE Trans on Info Theory, IT-12, pp. 81–82, 1966.CrossRefGoogle Scholar
  57. [57]
    F. Hlawatsch. “Interference Terms in the Wigner Distribution”, in:Digital Signal Processing — (V. Cappellini, A G. Constantinides, eds.). pp. 363–367. North-Holland, Amsterdam. 1984.Google Scholar
  58. [58]
    CP. Janse. A.J.M. Kaizer, “Time-Frequency Distributions of Loudspeakers: The Application of the Wigner Distribution”, J. Audio Eng. Soc., 31 (4). pp. 198–223. 1983.Google Scholar
  59. [59]
    A.J.E.M. Janssen, “Bargmann Transform. Zak Transform and Coherent States”. J. Math. Phys., 20 (5), pp. 720–731. 1982.ADSCrossRefGoogle Scholar
  60. [60]
    A.J.E.M. Janssen, “Gabor Representation and Wigner Distribution of Signals”, IEEE Int Coni, on Acoust., Speech and Signal Proc. ICASSP-84, San Diego (CA), pp. 41B.2.1–41B.2.4, 1984.Google Scholar
  61. [61]
    A.J.E.M. Janssen, “Bilinear Phase-Plane Distribution Functions and Positivity”, J. Math. Phys, 26 (8), pp. 1986–1994, 1985.MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    H.E. Jensen, T. Hoholdt, J. Justesen, “Double Series Expansions and Spectra of Bounded Signals Using a New Windowfunction”, Matematisk Institut DHT, Mat-Report 96. Lyngby (DK), 1982.Google Scholar
  63. [63]
    G. Jourdain, “Synthèse de Signaux Certains dont on Connaît la Fonction d’Ambiguité de Type Woodward ou de Type en Compression”, Ann. Télécomm., 32 (1–2), pp. 19–23, 1977.Google Scholar
  64. [64]
    S.M. Kay, S.L. Mar pie Jr, “Spectrum Analysis — A Modem Perspective”, Proc. IEEE, 69 (11), pp. 1380–1419.Google Scholar
  65. [65]
    S. Kay, G.F. Boudreaux-Bartels, “On the Optimality of the Wigner Distribution for Detection”, IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-85. Tampa (FL), pp. 27.2.1–27.2.4, 1985.Google Scholar
  66. [66]
    E.J. Kelly. R.P. Wishner, “Matched-Filter Theory for High-Velocity, Accelerating Targets”, IEEE Trans Mil Electron., MIL-9, pp. 56–69. 1965.CrossRefGoogle Scholar
  67. [67]
    W. Koenig, H.K. Dunn, L.Y. Lacy. “The Sound Spectrograph”. J. Acoust Soc. Am., 18 (1), pp. 19–49. 1946.ADSCrossRefGoogle Scholar
  68. [68]
    L.H. Koopmans. The Spectral Analysis of Time Series, Academic Press. New York. 1974.MATHGoogle Scholar
  69. [69]
    R. Kronland-Martinet, J. Morlet, A. Grossmann. “Analysis of Sound Patterns Through Wavelet Transforms”, Int. J. PatternReœgn Artif. Intell, 1 (2). pp. 273–302. 1987.CrossRefGoogle Scholar
  70. [70]
    J.G. Krüger. A Poffyn, “Quantum Mechanics in Phase Space I. Unicity of the Wigner Distribution Function”, Physica, 85A. pp. 84–100, 1976.MathSciNetGoogle Scholar
  71. [71]
    J.L. Lacoume, W. Kofman, “Description des Processus Non-Stationnaires par la Représentation Temps-Fréquence — Applications”. 5éme Coll GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 95–101. 1975.Google Scholar
  72. [72]
    H.J. Landau. H.O. Pollak. “Prolate Spheroidal Wave Functions. Fourier Analysis and Uncertainty — II”. Bell Sysl Tech. J., 40. pp. 65–84. 1961.MathSciNetMATHGoogle Scholar
  73. [73]
    R.M. Lerner. “Representation of Signals”, in: Lectures on Communication System Theory (E.J. Baghdady. ed.), pp. 202–242. Mc Graw-Hill. New York. 1961.Google Scholar
  74. [74]
    A.L. Levshin. V.F. Pisarenko. G.A. Pogrebinsky. “On a Frequency-Time Analysis of Oscillations”. Ann Geophys, 28 (2). pp. 211–218. 1972.Google Scholar
  75. [75]
    J.S. Liénard. “Speech Analysis and Reconstruction Using Short-Time. Elementary Waveforms”. IEEE Int Conf. on Acoust, Speech and Signal Proc. ICASSP-SZ Dallas (TX), 1987.Google Scholar
  76. [76]
    A. de Lima-Veiga, Y. Grenier. “Modèles Evolutifs à Coefficients Stochastiques”, 11ème Coll GRETSI sur le Traitement du Signal et des Images, Nice, pp. 93–96, 1987.Google Scholar
  77. [77]
    L. Ljung, T. Sòderstròm, Theory and Practice of Recursive Identification, MIT Press. Boston, 1983.MATHGoogle Scholar
  78. [78]
    R.M. Loynes. “On the Concept of the Spectrum for Non-Stationary Processes”. J. Roy Stat. Soc., 30(1). pp. 1–20. 1968.MathSciNetGoogle Scholar
  79. [79]
    J. Makhoul. “Linear Prediction: A Tutorial Review”. Proc. IEEE, 63. pp. 561–580. 1975.ADSCrossRefGoogle Scholar
  80. [80]
    N. Martin. “An AR Spectral Analysis of Non-Stationary Signals”. Signal Proc, 10 (1), pp. 61–74. 1986.ADSCrossRefGoogle Scholar
  81. [81]
    W. Martin, “Time-Frequency Analysis of Random Signals”, IEEE Int Conf. on Acoust, Speech and Signal Proc. ICASSP-82, Paris, pp. 1325–1328. 1982.Google Scholar
  82. [82]
    W. Martin, P. Flandrin, “Detection of Changes in Signal Structure by Using the Wigner-Ville Spectrum”, Signal Proc. 8 (2), pp. 215–233. 1985.CrossRefGoogle Scholar
  83. [83]
    W. Martin, P. Flandrin, “Wigner-Ville Spectral Analysis of Non-Stationary Processes”, IEEE Trans on Acoust, Speech and Signal Proc., ASSP-33 (6), pp. 1461–1470, 1985.CrossRefGoogle Scholar
  84. [84]
    W. Mecklenbräuker, “A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations”, in: Traitement du Signal/Signal Processing (J.L. Lacoume, T.S. Durrani, R. Stora, eds.). Les Houches, Session XLV, pp. 277–336, North-Holland, Amsterdam, 1985.Google Scholar
  85. [85]
    D. Menne, “A Matched Filter Bank for Time Delay Estimation in Bats”, in: Animal Sonar Systems (P. Nachtigall, ed.). Plenum Press, New York, in press.Google Scholar
  86. [86]
    L.K. Montgomery, I.S. Reed, “A generalization of the Gabor-Helstrom Transform”. IEEE Trans on Info Theory, IT-13. pp. 344–345. 1967.CrossRefGoogle Scholar
  87. [87]
    J.E. Moyal, “Quantum Mechanics as a Statistical Theory”. Proc. Camb. Phil Soc., 45, pp. 99–124. 1949.MathSciNetADSMATHCrossRefGoogle Scholar
  88. [88]
    C.H. Page, “Instantaneous Power Spectra”, J. Appl. Phys., 23 (1). pp. 103–106, 1952.ADSMATHCrossRefGoogle Scholar
  89. [89]
    A. Papoulis, Probability, Random Variables and Stochastic Proœsses, Mc Graw-Hill, New York, 1965.Google Scholar
  90. [90]
    T. Paul, “Fonctions de Wigner Affines”, Colloque RCP 820 “Ondelettes”, Pau, 1986.Google Scholar
  91. [91]
    L. Pimonow, Vibrations en Régime fransitojre, Dunod, Paris, 1962.Google Scholar
  92. [92]
    R.K. Potter, G.A. Kopp, H.C. Green, Visible Speech, D. van Nostrand Co, New York, 1947.Google Scholar
  93. [93]
    M.B. Priestley, Spectral Analysis and Time Series, Academic Press, New York, 1981.MATHGoogle Scholar
  94. [94]
    A.W. Rihaczek, “Signal Energy Distribution in Time and Frequency” IEEE Trans on Info. Theory. IT-14 (3). pp. 369–374, 1968.CrossRefGoogle Scholar
  95. [95]
    M.R. Schroeder, B.S. Atal, “Generalized Short-Time Power Spectra and Autocorrelation Functions”, J Acoust, Soc Am., 34 (11), pp. 1679–1683. 1962.ADSCrossRefGoogle Scholar
  96. [96]
    J.A. Simmons, “Acoustic Images of Target Range in the Sonar of Bats”, Naval Res Rev., in press.Google Scholar
  97. [97]
    D. Slepian, H.O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — I”, Bell Syst Tech. J., 40, pp. 43–64, 1961.MathSciNetMATHGoogle Scholar
  98. [98]
    J.M. Speiser. “Wide-Band Ambiguity Functions”. IEEE Trans on Infa Theory, pp. 122–123. 1967.Google Scholar
  99. [99]
    J. Tonndorf, “Time/Frequency Analysis Along the Partition of Cochlear Models: A Modified Place Concept”. J. Acoust. Soc. Am., 34 (8), pp. 1337–1350, 1962.ADSCrossRefGoogle Scholar
  100. [100]
    H.L. van Trees, Detection, Estimation and Modulation Theory — Part III, J. Wiley Sc Sons. New York. 1971.Google Scholar
  101. [101]
    J. Ville. “Théorie et Applications de la Notion de Signal Analytique”. Cables et Transm., 2ème A (1). pp. 61–74. 1948.Google Scholar
  102. [102]
    K.W. Wagner, “Zur Theorie der Unvollkommenen Dielektrika”, Ann. Physik, 40 (5). pp. 817–855, 1913.ADSMATHCrossRefGoogle Scholar
  103. [103]
    E.P. Wigner, “On the Quantum Correction for Thermodynamic Equilibrium”, Phys Rev, 40. pp. 749–759. 1932.ADSMATHCrossRefGoogle Scholar
  104. [104]
    E.P. Wigner. “Quantum-Mechanical Distribution Functions Revisited”, in:Perspectives in Quantum Theory (W. Yourgrau, A. van de Merwe, eds.), pp. 25–36. MIT Press, Cambridge. 1971.Google Scholar
  105. [105]
    P.M. Woodward. Probability and Information Theory with Application to Radar, Pergamon Press. London, 1953.Google Scholar
  106. [106]
    N. Yen, “Time and Frequency Representation of Acoustic Signals by Means of the Wigner Distribution Function: Implementation and Interpretation”, J. Acust. Soc. Am., 81 (6), pp. 1841–1850, 1987.ADSCrossRefGoogle Scholar
  107. [107]
    J.E. Youngberg, S.F. Boll, “Constant-Q Signal Analysis and Synthesis”, IEEE Int Conf. on Acoust. Speech and Signal Proc. ICASSP-78, Tulsa(OK), pp. 375–378, 1978.Google Scholar
  108. [108]
    M. Zakharia. “Contribution à la Caractérisation et à l’Identification de Formes Simples par Sonar Actif: Application à un Sonar de Pêche”, Thèse Doct.-Ing., Univ. Aix-Marseille II, Luminy, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Flandrin
    • 1
  1. 1.Laboratoire de Traitement du SignalUA 346 CNRS, ICPILyon Cedex 02France

Personalised recommendations