Skip to main content

Orthonormal Bases of Wavelets with Finite Support — Connection with Discrete Filters

  • Conference paper
Wavelets

Part of the book series: Inverse Problems and Theoretical Imaging ((IPTI))

Abstract

We define wavelets and the wavelet transform. After discussing their basic properties, we focus on orthonormal bases of wavelets, in particular bases of wavelets with finite support.

‘Bevoegdverklaard Navorser’ at the Belgium National Foundation for Scientific Research (on leave); on leave also from Department of Theoretical Physics, Vrije Universiteit Brussel, (Belgium).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. J. Morlet, G. Arens, I. Fourgeau and D. Giard, “Wave propagation and sampling theory,” Geophysics 47 (1982) 203–236.

    Article  ADS  Google Scholar 

  2. A. Grossman and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape”, SIAM J. Math. Anal. 15 (1984) 723–736.

    Google Scholar 

  3. P. Goupillaud, A. Grossmann and J. Morlet, “Cycle-octave and related transforms in seismic signal analysis”, Geoexploration 23 (1984) 85.

    Article  Google Scholar 

  4. The wavelet transform is implicitly used in A. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math. 24 (1964) 113–190.

    MathSciNet  Google Scholar 

  5. It appears more explicitly in e.g. A. Calderón and A. Torchinsky, “Parabolic maximal functions associated to a distribution, I”, Adv. Math. 16 (1975) 1–64.

    Article  MATH  Google Scholar 

  6. An application to a singular integral operator relevant for quantum mechanics can be found in C. Fefferman and R. de la Llave, “Relativistic stability of matter,” Rev. Mat. Iberoamericana 2 (1986).

    Google Scholar 

  7. J. R. Klauder and B.-S. Skagerstam, “Coherent States”, World Scientific (Singapore) 1985.

    MATH  Google Scholar 

  8. E. W. Aslaksen and J. R. Klauder, “Unitary representations of the affine group,” J. Math. Phys. 9 (1968) 206–211

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. “Continuous representation theory using the affine group”, J. Math. Phys. 10 (1969) 2267–2275.

    Article  Google Scholar 

  10. T. Paul, “Affine coherent states and the radial Schrodinger equation I. Radial harmonic oscillator and the hydrogen atom”, to be published.

    Google Scholar 

  11. K. G. Wilson and J. B. Kogut, Physics Reports 12C (1974) 77.

    Article  ADS  Google Scholar 

  12. J. Glimm and A. Jaffe, “Quantum physics: a functional integral point of view”. Springer (New York) 1981.

    MATH  Google Scholar 

  13. G. Battle and P. Federbush, “Ondelettes and phase cell cluster expansions: a vindication”. Comm. Math. Phys. 109 (1987) 417–419.

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Daubechies, “The wavelet transform, time-frequency localisation and signal analysis”, to be published in IEEE Trans. Inf. Theory.

    Google Scholar 

  15. R. Balian, “Un principe d’incertitude fort en théorie du signal ou en mécanique quantique”, C. R. Acad. Se. Paris 292, série 2 (1981) 1357–1362.

    MathSciNet  Google Scholar 

  16. F. Low, “Complex sets of wave-packets” in “A passion for physics — Essays in honor of G. Chew”, World Scientific (Singapore) 1985, pp. 17–22.

    Google Scholar 

  17. G. Battle, “Heisenberg proof of the Balian-Low theorem”, to be published in Lett. Math.Phys.

    Google Scholar 

  18. D. Gabor, “Theory of communication”, J. Inst. Elec. Eng. (London) 93 III (1946) 429–457.

    Google Scholar 

  19. M. J. Bastiaans, “A sampling theorem for the complex spectrogram and Gabor’s expansion of a signal in Gaussian elementary signals”, Optical Eng. 20 (1981) 594–598.

    Google Scholar 

  20. A.J.E. M. Janssen, “Gabor representation of generalized functions,” J. Math. Appl. 80 (1981) 377–394.

    Google Scholar 

  21. Y. Meyer, “Principe d’incertitde, bases hilbertiennes et algèbres d’opérateurs”. Séminaire Bourbaki, 1985–1986, nr.662.

    Google Scholar 

  22. P. G. Lemarié and Y. Meyer, “Ondelettes et bases hilbertiennes”, Rev. Mat. Iberoamericana 2 (1986) 1–18.

    Article  MathSciNet  Google Scholar 

  23. G. Battle, “A block spin construction of ondelettes. I: Lemarié functions,” Comm. Math. Phys. 110 (1987) 601–615.

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Lemarié, “Ondelettes à localisation exponentielle”, to be published in J. de Math. Pures et Appl.

    Google Scholar 

  25. S. Mallat, “Multiresolution approximation and wavelets”, to be published.

    Google Scholar 

  26. S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation”, to be published in IEEE Trans, on Pattern Analysis and Machine Intelligence.

    Google Scholar 

  27. P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code”, IEEE Trans. Comm. 31 (1983) 582–540

    Article  Google Scholar 

  28. “A multiresolution spline with application to image mosaics”, ACM Trans, on Graphics, 2 (1983) 217–236.

    Article  Google Scholar 

  29. I. Daubechies, “Orthonormal bases of compactly supported wavelets”. Comm. Pure & Appl. Math. 49 (1988) 909–996.

    Article  MathSciNet  Google Scholar 

  30. Y. Meyer, “Ondelettes et fonctions splines”. Séminaire E.D.P., Ecole Polytechnique, Paris, France, December 86.

    Google Scholar 

  31. M. J. Smith and D. P. Barnwell, “Exact reconstruction techniques for tree-structured subband coders”, IEEE Trans, on ASSP 34 (1986) 434–441.

    Article  Google Scholar 

  32. D. Esteban and C. Galand, “Application of quadrature minor filters to split band voice coding schemes”, Proc. Int. Conf. ASSP (1977) 191–195.

    Google Scholar 

  33. G. Polya and G. Szego, “Aufgaben und Lehrsätse aus der Analysis” Vol. II, Springer (Berlin) 1971.

    Book  Google Scholar 

  34. I. Daubechies and J. Lagarias, “Two-scale difference equations: I. Global regularity of solutions”, preprint AT&T Bell Laboratories.

    Google Scholar 

  35. — Two-scale difference equations: II Infinite products of matrices, local regularity and fractals.”, preprint AT&T Bell Laboratories.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daubechies, I. (1989). Orthonormal Bases of Wavelets with Finite Support — Connection with Discrete Filters. In: Combes, JM., Grossmann, A., Tchamitchian, P. (eds) Wavelets. Inverse Problems and Theoretical Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97177-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97177-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97179-2

  • Online ISBN: 978-3-642-97177-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics