Wavelets pp 253-258 | Cite as

Wavelets on Chord-Arc Curves

  • P. Auscher
Conference paper
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)


We give a new proof of a theorem of G. David which says that the Cauchy integral on a chord-arc curve Γ is a bounded operator on L2 (ℝ). The main tool we use is the multiresolution analysis to get wavelets adapted to Γ.


Bounded Operator Singular Integral Operator Multiresolution Analysis Riesz Basis Logarithmic Spiral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Thèse de doctorat, P. Auscher. Université de Paris Dauphine. To appear.Google Scholar
  2. [AT]
    “Ondelettes, pseudoaccrétivité, noyau de Cauchy et espaces de Hardy”, P. Auscher, P. Tchamitchian. To appear.Google Scholar
  3. [C]
    “Cauchy integral on Lipschitz curves and related operators”, A.P. Calderon. Proc. Nat. Ac. of Sciences 74, tome 4, (1977), 1324–1327.MathSciNetADSCrossRefGoogle Scholar
  4. [CZ]
    “Singular integral operators and differential equations”, A.P. Calderon, A. Zygmund. Am. J. of Math. 79 (1957), 901–921.MathSciNetMATHCrossRefGoogle Scholar
  5. [CM]
    “Au-delà des opérateurs pseudo différentiels R. Coifman, Y. Meyer. Astérisque nº57.Google Scholar
  6. [CMM]
    “L’intégrale de Cauchy définit un opérateur borné sur L2 (ℝ) pour les courbes 1ipschitziennes”, R. Coifman, A. Mc Intosh, Y. Meyer. Ann. of Math. 116 (1982), 361–387.MathSciNetMATHCrossRefGoogle Scholar
  7. [D]
    “Opérateurs intégraux singuliers sur certaines courbes du plan complexe”, G. David. Ann Sc. de 1’ENS 17 (1984) 157–189.MATHGoogle Scholar
  8. [DJ]
    “A boundedness criterion for generalized Calderon-Zygmund operators”, G. David, J.L Journé. Ann. of Math. 120 (1984), 371–389.MathSciNetMATHCrossRefGoogle Scholar
  9. [LM]
    “Ondelettes et bases hilbertiennes” P.G. Lemarié et Y. Meyer. Rev. Mat. Iberoamericana, vol. 2, nº 1, (1986).Google Scholar
  10. [Ma]
    “Multiresolution approximation and wavelets”, S. Mallat (1987) Dept of C.I.S.S.E.A.S., Univ. Of Pennsy1vannia, Philadelphia, PA 19104–6389.Google Scholar
  11. [M]
    “Wavelets wieved by a mathematician” Y. Meyer. This proceedings.Google Scholar
  12. [T]
    “Ondelettes et intégrale de Cauchy sur une courbe lipschit-zienne”, P. Tchamitchian. To appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Auscher
    • 1
  1. 1.UER de Math-infoUniversité de Bordeaux ITalence CedexFrance

Personalised recommendations