Wavelets pp 204-208 | Cite as

Wavelets and Path Integral

Conference paper
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)


The matrix elements between wavelets of the quantum propagator for a large class of Hamiltonians on the half-line are given in terms of path integral. It is a sum over path defined on the upper half plane with a Wiener measure associated to the hyperbolic Laplacian in the limit where the diffusion constant diverges. The construction in the case of the circle is sketched.


Phase Space Coherent State Half Plane Wavelet Coefficient Configuration Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. Feynman; Rev. Mod. Phys. 20 367 (1948).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. G. Babbitt; J. Matii. Phys. 4 36 (1963)MathSciNetADSCrossRefGoogle Scholar
  3. [2a]
    E. Nelson; J. Matii. Phys. 5 332 (1964)Google Scholar
  4. [2b]
    J. Tarski; Ann. Inst. Poincaré 17 313 (1972)MathSciNetGoogle Scholar
  5. [2c]
    K. Gawedzki; Rep. Math. Physics 6 327 (1974)MathSciNetADSCrossRefGoogle Scholar
  6. [2d]
    S. A. Albeverio and R. J. Hoegh-Krohn; “Mathematical Theory of Feynman Path Integrals” (Springer, Berlin, 1976)MATHGoogle Scholar
  7. [2e]
    C. De Witt Morette, A. Maheshwari and B. Nelson, Phys. Rep. 50 255 (1979)MathSciNetADSCrossRefGoogle Scholar
  8. [2f]
    P. Combe, R. Hoegh Krohn, R. Rodriguez and M. Sinigue, Comm. Math. Physics 77 269 (1980)ADSMATHCrossRefGoogle Scholar
  9. [2g]
    I. Daubechies and J. R. Klauder, J. Math. Physics 23 806 (1982)MathSciNetCrossRefGoogle Scholar
  10. [2h]
    J. R. Klauder “Quantization is geometry, after all”n (Preprint AT&T BeU Laboratories, Murry Hill, NJ. 07974 USA).Google Scholar
  11. [3]
    I. Daubechies and J. R. Klauder; J. Matii Physics 25 2239 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. [4]
    I. Daubechies, J. R. Klauder and T. Paul; J. Matii. Physics 28 (1987).Google Scholar
  13. [5]
    E. Schrodinger, Sitzungsher Pniss, Akad — Wiss. Phys. Math. Klasse 906 (1930).Google Scholar
  14. [6]
    J. R. Klauder and B. S. Skagerstam, “Coherent States, Applictions in Physics and Mathematical Physics (World Scientific, Singapore (1985).Google Scholar
  15. [7]
    A. Grossman, J. Morlet and P. Paul; J. Math. Physics 26 2473 (1985)ADSCrossRefGoogle Scholar
  16. [7a]
    A. Grossman, J. Morlet and P. Paul and Ann. Inst. H. Poincaré 65 293 (1986).Google Scholar
  17. [8]
    T. Paul. ThesisGoogle Scholar
  18. [9]
    S. Graffi, T. Paul; Resonnance overlapping, quasi-energy avoided crossing and microwave ionization of hydrogen atom — preprint CPT, CNRS Luminy Case 907 13288 Marseille Cedex 9. France.Google Scholar
  19. [10]
    J. M. Souriau “Structure des Systèmes Dynamiques” Dunod. ParisGoogle Scholar
  20. [11]
    In preparationGoogle Scholar
  21. [12]
    J. Bellissard; “Stability and Instability in Quantum Mechanics” in Trends and Developments in the Eighties. S. Albeveiro and P. Blanchard eds. World Scientific, 1985, Singapore.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • T. Paul
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations