Wavelets pp 147-153 | Cite as

Time-Frequency Analysis of Signals Related to Scattering Problems in Acoustics Part I: Wigner-Ville Analysis of Echoes Scattered by a Spherical Shell

  • J. P. Sessarego
  • J. Sageloli
  • P. Flandrin
  • M. Zakharia
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)


Numerous studies (both theoretical and experimental) have been devoted to the problem of acoustical scattering by targets of simple shapes. This paper will show some of the main results which have been obtained. It will point out the encountered problems and the classical signal analysis tools which are available.


Surface Wave Spherical Shell Wigner Distribution Acoustical Scattering Wigner Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Brill. G.C. Gaunaurd, “Resonance theory of elastic waves ultrasonically scattered from an elastic sphere”, J, Acoust. Soc. Am. 81 (1), pp. 1–21, 1987.ADSCrossRefGoogle Scholar
  2. [2]
    D. Brill, G.C.Gaunaurd, H. Überall, “Acoustic spectroscopy”, J. Acoust Soc. Am. 72(3), pp. 1067–1069, 1982.ADSCrossRefGoogle Scholar
  3. [3]
    R. Burvingt, J.L. Rousselot, A. Derem, G. Maze, J. Ripoche, “Réponse acoustique de cylindres élastiques”. Rev. CETHEDEC, 21 e année (78). pp. 73–94. 1984Google Scholar
  4. [4]
    M. Fekih, G. Quentin. “Présentation et interprétation des expériences de diffusion par des cylindres élastiques aux valeurs élevées de ka”. Rev. CETHEDEC, 19 e année (72). pp. 91–102. 1982.Google Scholar
  5. [5]
    M. Talmant, “Rétrodiffusion d’une impulsion ultrasonore brève par une coque cylindrique à paroi mince” Thèse Univ. Paris 7. 1987.Google Scholar
  6. [6]
    G. Deprez, R. Hazebrouck. “Diffraction d’une onde impulsive sphérique par une sphère creuse plongée dans l’air”. Rev CETHEDEC, 19 e année (72). pp. 73–90. 1982.Google Scholar
  7. [7]
    J.L. Rousselot, A. Gérard, J.P. Sessarego, J. Sageloli, “Réponse basse fréquence d’une coque sphérique mince immergée”, Acustica, to appear.Google Scholar
  8. [8]
    J.L. Rousselot, “Relation entre les ondes de surface et les résonances dans un cylindre élastique creux”. Rev CETHEDEC, 19 e année (72), pp. 47–60, 1982.Google Scholar
  9. [9]
    H. Überall, L.R. Dragonnette, L. Flax, “Relation between creeping waves and normal modes of vibration of a curved body”, J. Acoust Soc. Am. 61 (3). pp. 711-, 1977.ADSCrossRefGoogle Scholar
  10. [10]
    G. Maze. J. Ripoche, “Méthode d’isolement et d’identification de résonances (M.I.I.R.) de cylindres et de tubes soumis à une onde acoustique plane dans l’eau”. Rev. Phys Ap. 18, pp. 319–326. 1983.CrossRefGoogle Scholar
  11. [11]
    T.A.CM. Claasen, W.F.G. Mecklenbrâuker. “The Wigner distribution — A tool for time-frequency signal analysis”, Philips J. Res 35, pp.217–250, 276–300. 372–389. 1980.MathSciNetMATHGoogle Scholar
  12. [12]
    P. Flandrin, B. Escudié, “Principe el mise en oeuvre de l’analyse temps-fréquence par transformation de Wigner-Ville”, Traitement du Signal pp. 143–151. 1985.Google Scholar
  13. [13]
    N.C. Yen, “Time and frequency representation of acoustic signals by means of the Wigner distribution function: implementation and interpretation”, J. Acoust. Soc. Am. 81 (6), pp. 1841–1850. 1987.ADSCrossRefGoogle Scholar
  14. [14]
    P. Flandrin, J. Sagel, J.P. Sessarego. M. Zakharia. “Application of time-frequency analysis to the characterization of surface waves on elastic targets”, Acoust Lett 10(2), pp. 23–28. 1986.Google Scholar
  15. [15]
    P. Flandrin, J. Sageloli, J.P. Sessarego, M. Zakharia, “Application de l’analyse temps-fréquence à la caractérisation de cibles”, Onzième Colloque GRETSI. Nice, pp. 329–332. 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. P. Sessarego
    • 1
  • J. Sageloli
    • 1
  • P. Flandrin
    • 2
  • M. Zakharia
    • 2
  1. 1.Laboratoire de Mécanique et d’AcoustiqueCNRSMarseille Cedex 09France
  2. 2.Laboratoire de Traitement du Signal (UA 346 CNRS)ICPILyon Cedex 02France

Personalised recommendations