Boundary Layer Flow

  • Clive A. J. Fletcher
Part of the Springer Series in Computational Physics book series


Traditionally it has been useful to consider boundary layer flow as a separate category (Table 11.4 and Sect. 11.4). From a computational perspective it is convenient to classify boundary layer flow as a flow for which viscous diffusion is significant only in directions normal to the surface on which the boundary layer occurs (Fig. 15.1) and for which the normal momentum equation can be replaced with the condition that the pressure is constant. For such flows the governing equations are non-elliptic, if the pressure solution is given. This permits very efficient single-pass marching algorithms to be introduced (in the x direction in Fig. 15.1).


Boundary Layer Turbulent Boundary Layer Boundary Layer Thickness Eddy Viscosity Boundary Layer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, A.J. (1983): Finite Element Computational Fluid Mechanics (McGraw-Hill, New York)MATHGoogle Scholar
  2. Blottner, F.G. (1975a): “Computational Techniques for Boundary Layers”, AGARD LS-73, Nato, Brussels, pp. 3.1–3.51Google Scholar
  3. Blottner, F.G. (1975b): Comput. Methods Appl. Mech. Eng. 6, 1–30CrossRefMATHADSMathSciNetGoogle Scholar
  4. Bradshaw, P. (1967): National Physical Laboratory, Aero Report 1219Google Scholar
  5. Carter, J.E. (1981): “Viscous-Inviscid Interaction Analysis of Transonic Turbulent Separated Flow”, AIAA Paper 81–1241Google Scholar
  6. Cebeci, T. (1975): AIAA J. 13, 1056–1064CrossRefMATHADSGoogle Scholar
  7. Cebeci, T., Bradshaw, P. (1977): Momentum Transfer in Boundary Layers (McGraw-Hill, New York)MATHGoogle Scholar
  8. Coles, P., Hirst, E. (eds.) (1968): Computation of Turbulent Boundary Layers Vol. 2 (Stanford University, Stanford)Google Scholar
  9. Dwyer, H. (1981): Annu. Rev. Fluid Mech. 13, 217–229CrossRefADSGoogle Scholar
  10. Fleet, R.W., Fletcher, C.A.J. (1983): “Application of the Dorodnitsyn Boundary Layer Formulation to Turbulent Compressible Flow”, in Eighth Australasian Fluid Mechanics Conference, ed. by R.A. Antonia (Newcastle University, Newcastle), pp. 1C1–1C4Google Scholar
  11. Fletcher, C.A.J. (1983): Comput. Methods Appl. Mech. Eng. 37, 225–243CrossRefADSMathSciNetGoogle Scholar
  12. Fletcher, C.A.J. (1984): Computational Galerkin Methods, Springer Ser. Comput. Phys. (Springer, Berlin, Heidelberg)MATHGoogle Scholar
  13. Fletcher, C.A.J. (1985): Int. J. Numer. Methods Fluids 5, 443–462CrossRefMATHADSMathSciNetGoogle Scholar
  14. Fletcher, C.A.J., Fleet, R.W. (1984a): Int. J. Numer. Methods Fluids 4, 399–419CrossRefMATHADSGoogle Scholar
  15. Fletcher, C.A.J., Fleet, R.W. (1984b): Comput. Fluids 12, 31–45CrossRefMATHADSGoogle Scholar
  16. Fletcher, C.A.J., Fleet, R.W. (1987): J. Appl. Mech. 54, 197–202CrossRefMATHADSGoogle Scholar
  17. Fletcher, C.A.J., Holt, M. (1975): J. Comput. Phys. 18, 154–164CrossRefMATHADSGoogle Scholar
  18. Fletcher, C.A.J., Holt, M. (1976): J. Fluid Mech. 74, 561–591CrossRefMATHADSGoogle Scholar
  19. Gear, C.W. (1971): Commun. ACM 14, 185–190CrossRefMathSciNetGoogle Scholar
  20. Isaacson, E., Keller, H.B. (1966): An Analysis of Numerical Methods (Wiley, New York)Google Scholar
  21. Keller, H. (1978): Annu. Rev. Fluid Mech. 10, 417–433CrossRefADSGoogle Scholar
  22. Krause, E. (1967): AIAA J. 7, 1231–1237CrossRefADSGoogle Scholar
  23. Krause, E. (1973): “Numerical Treatment of Boundary Layer Problems”, AGARD LS-64, Brussels, Nato pp. 4.1–4.21Google Scholar
  24. McLean, J.D., Randall, J.L. (1979): “Computer Program to Calculate Three-Dimensional Boundary Layer Flows over Wings with Wall Mass Transfer”, NASA CR-3123Google Scholar
  25. Noye, J. (1983): “Finite Difference Techniques for Partial Differential Equations” in Computational Techniques for Differential Equations, ed. by J. Noye (North-Holland, Amsterdam)Google Scholar
  26. Patankar, S.V., Spalding, D.B. (1970): Heat and Mass Transfer in Boundary Layers, 2nd ed. (Intertext, London)Google Scholar
  27. Peyret, R., Taylor, T.D. (1983): Computational Methods for Fluid Flow, Springer Ser. Comput. Phys. (Springer, Berlin, Heidelberg)MATHGoogle Scholar
  28. Reynolds, W.C. (1976): Annu. Rev. Fluid Mech. 8, 183–208CrossRefADSGoogle Scholar
  29. Rosenhead, L. (1964): Laminar Boundary Layers (Oxford University Press, Oxford)Google Scholar
  30. Schiff, L., Steger, J.L. (1980): AIAA J. 18, 1421–1430CrossRefMATHADSMathSciNetGoogle Scholar
  31. Schlichting, H. (1968): Boundary Layer Theory, 6th ed. (McGraw-Hill, New York)Google Scholar
  32. Yeung, W.S., Yang, R.J. (1981): J. Appl. Mech. 48, 701–706CrossRefMATHADSGoogle Scholar
  33. Zienkiewicz, O.C. (1977): The Finite Element Method, 3rd ed. (McGraw-Hill, London)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Clive A. J. Fletcher
    • 1
  1. 1.Department of Mechanical EngineeringThe University of SydneyNew South WalesAustralia

Personalised recommendations