Skip to main content

Fluid Dynamics: The Governing Equations

  • Chapter
Computational Techniques for Fluid Dynamics

Part of the book series: Springer Series in Computational Physics ((SSCP))

Abstract

In this chapter, equations will be developed that govern the more common categories of fluid motion. Subsequently, various simplifications of these equations will be presented and the physical significance of these simpler equations discussed. The simplifications often coincide with limiting values of particular nondimensional numbers (Sect. 11.2.5), e.g. incompressible flow is often associated with very small values of the Mach number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aris, R. (1962): Vectors, Tensors and the Basic Equations of Fluid Dynamics (Prentice-Hall, Englewood Cliffs, N J.)

    Google Scholar 

  • Batchelor, G.K. (1967): An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge)

    MATH  Google Scholar 

  • Bird, G. (1976): Molecular Gas Dynamics (Oxford University Press, Oxford)

    Google Scholar 

  • Cebeei, T., Bradshaw, P. (1977): Momentum Transfer in Boundary Layers (Hemisphere-McGraw-Hill, Washington, D.C.)

    Google Scholar 

  • Cebeci, T., Bradshaw, P. (1984): Physical and Computational Aspects of Convective Heat Transfer (Springer, New York, Berlin, Heidelberg)

    MATH  Google Scholar 

  • Chu, C.K. (1978): Adv. Appi. Mech. 18, 285–331

    Article  MATH  Google Scholar 

  • Eckert, E.R.G., Drake, R.M. (1972): Analysis of Heat and Mass Transfer (McGraw-Hill, New York)

    MATH  Google Scholar 

  • Fasel, H. (1978): VKI Lecture Series 78-4, Von Karman Institute, pp. 1–90

    Google Scholar 

  • Gustafson, K.E. (1980): Partial Differential Equations and Hilbert Space Methods (Wiley, New York)

    MATH  Google Scholar 

  • Gustafsson, B., Sundstrom, A. (1978): SIAM J. Appi. Math. 35, 343–357

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, W.F., Gaylord, E.W. (1964): Basic Equations of Engineering Science (McGraw-Hill, New York)

    Google Scholar 

  • Launder, B.E., Spalding, D.B. (1974): Comput. Methods Appi. Mech. Eng. 3, 269–289

    Article  MATH  ADS  Google Scholar 

  • Liepmann, H.W., Roshko, A. (1957): Elements of Gasdynamics (Wiley, New York)

    MATH  Google Scholar 

  • Lighthill, M.J. (1963): In Laminar Boundary Layers, ed. by L. Rosenhead (Oxford University Press, Oxford) pp. 1–45

    Google Scholar 

  • Marvin, J.G. (1983): AIAA J. 21, 941–955

    Article  ADS  Google Scholar 

  • Milne-Thomson, L.M. (1968): Theoretical Hydrodynamics, 5th ed. (Macmillan, London)

    MATH  Google Scholar 

  • Oliger, J., Sundstrom, A. (1978): SIAM J. Appi. Math. 3, 419–446

    Article  MathSciNet  Google Scholar 

  • Panton, R.L. (1984): Incompressible Flow (Wiley, New York)

    MATH  Google Scholar 

  • Patel, V.C., Rodi, W., Scheuerer, G. (1985): AIAA J. 23, 1308–1319

    Article  ADS  MathSciNet  Google Scholar 

  • Peyret, R., Taylor, T.D. (1983): Computational Methods for Fluid Flow, Springer Ser. Comput. Phys. (Springer, Berlin, Heidelberg)

    MATH  Google Scholar 

  • Quartapelle, L., Valz-Gris, F. (1981): Int. J. Numer. Methods Fluids 1, 129–144

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rodi, W. (1980): Turbulence Models and Their Application in Hydraulics (I.A.H.R., Delft)

    Google Scholar 

  • Rodi, W. (1982): AIAA J. 20, 872–879

    Article  ADS  Google Scholar 

  • Rogallo, R.S., Moin, P. (1984): Annu. Rev. Fluid Mech. 16, 99–137

    Article  ADS  Google Scholar 

  • Rosenhead, L. (1963): Laminar Boundary Layers (Oxford University Press, Oxford)

    MATH  Google Scholar 

  • Schlichting, H. (1968): Boundary Layer Theory, 6th ed. (McGraw-Hill, New York)

    Google Scholar 

  • Simpson, R.L. (1981): J. Fluids Eng. 103, 520–533

    Article  Google Scholar 

  • Streeter, V.L., Wylie, E.B. (1979): Fluid Mechancis, 7th ed. (McGraw-Hill, New York)

    Google Scholar 

  • Tanner, R.I. (1985): Engineering Rheology (Oxford University Press, Oxford)

    MATH  Google Scholar 

  • Tobak, M., Peake, D. (1982): Annu. Rev. Fluid Mech. 14, 61–85

    Article  ADS  MathSciNet  Google Scholar 

  • van Wylen, G.J., Sonntag, R. (1976): Fundamentals of Classical Thermodynamics (Wiley, New York)

    Google Scholar 

  • von Schwind, J.J. (1980): Geophysical Fluid Dynamics for Oceanographers (Prentice-Hall, Englewood Cliffs, N.J.)

    Google Scholar 

  • Wong, A., Reizes, J. (1984): J. Comput. Phys. 55, 98–114

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fletcher, C.A.J. (1988). Fluid Dynamics: The Governing Equations. In: Fletcher, C.A.J. (eds) Computational Techniques for Fluid Dynamics. Springer Series in Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97071-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97071-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97073-3

  • Online ISBN: 978-3-642-97071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics