Steady Problems

  • Clive A. J. Fletcher
Part of the Springer Series in Computational Physics book series (SSCP)


Many of the examples considered in Chaps. 3–5 have included time as an independent variable and the construction of the algorithms has taken this into account. However many problems in fluid dynamics are inherently steady, and the governing equations are often elliptic in character (Sect. 2.4).


Coarse Grid Conjugate Gradient Method Multigrid Method Gauss Elimination Nodal Unknown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelsson, O., Gustafsson, I. (1979): J. Inst. Math. Its Appl. 23, 321–337MATHCrossRefGoogle Scholar
  2. Brandt, A. (1977): Math. Comput. 31, 333–390MATHCrossRefGoogle Scholar
  3. Brigham, E.O. (1974): The Fast Fourier Transform ( Prentice-Hall, Englewood Cliffs, N.J. )MATHGoogle Scholar
  4. Broyden, C. (1965): Math. Comput. 19, 577–593MathSciNetMATHCrossRefGoogle Scholar
  5. Cooley, J.W., Lewis, P.A.W., Welch, P.D. (1970): J. Sound and Vibrations, 12, 315–337ADSMATHCrossRefGoogle Scholar
  6. Dahlquist, G., Bjorck, A. (1974): Numerical Methods, trans. by N. Anderson ( Prentice-Hall, Englewood Cliffs, N.J. )Google Scholar
  7. Dorr, F.W. (1970): SIAM Rev. 12, 248–263MathSciNetMATHCrossRefGoogle Scholar
  8. Duff, I.S. (1981): “A Sparse Future”, in Sparse Matrices and Their Uses, ed. by I.S. Duff ( Academic, London ) pp. 1–29Google Scholar
  9. Engelman, M.S., Strang, G., Bathe, K.J. (1981): Int. J. Numer. Methods Eng. 17, 707–718MathSciNetMATHCrossRefGoogle Scholar
  10. Fletcher, C.A.J. (1983): Int. J. Numer. Methods Fluids 3, 213–216ADSMATHCrossRefGoogle Scholar
  11. Fletcher, R. (1976): In Numerical Analysis, ed. by G.A. Watson, Lecture Notes in Mathematics, Vol. 506 ( Springer, Berlin, Heidelberg )Google Scholar
  12. Fletcher, R. (1980): Practical Methods of Optimization, Vol 1, Unconstrained Optimization ( Wiley, Chichester )MATHGoogle Scholar
  13. Forsythe, G.E., Malcolm, M.A., Moler, C.B. (1977): Computer Methods for Mathematical Computations ( Prentice-Hall, Englewood Cliffs, N.J. )MATHGoogle Scholar
  14. Gerald, C. (1978): Applied Numerical Analysis, 2nd ed. ( Addison-Wesley, Reading, Mass. )Google Scholar
  15. Hackbusch, W. (1985): Multigrid Methods and Applications, Springer Ser. Comput. Math. (Springer, Berlin, Heidelberg )Google Scholar
  16. Hageman, L.A., Young, D.M. (1981): Applied Iterative Methods ( Academic, New York )MATHGoogle Scholar
  17. Hestenes, M.R., Stiefel, E.L. (1952): Nat. Bur. Stand. J. Res. 49, 409–436MathSciNetMATHCrossRefGoogle Scholar
  18. Hockney, R.W. (1970): Meth. Comp. Phys., 9, 135–211Google Scholar
  19. Hockney, R.W., Jesshope, C.R. (1981): Parallel Computers ( Adam Hilger, Bristol )MATHGoogle Scholar
  20. Isaacson, E., Keller, H.B. (1966): Analysis of Numerical Methods ( Wiley, New York )MATHGoogle Scholar
  21. Jackson, C.P., Robinson, P.C. (1985): Int. J. Numer. Methods Eng. 21, 1315–1338MathSciNetMATHCrossRefGoogle Scholar
  22. Jennings, A. (1977a): Matrix Computation for Engineers and Scientists ( Wiley, Chichester )MATHGoogle Scholar
  23. Jennings, A. (1977b): J. Inst. Math. Its Appl. 20, 61–72MathSciNetMATHCrossRefGoogle Scholar
  24. Khosla, P.K., Rubin, S.G. (1981): Comput. Fluids 9, 109–121MathSciNetADSCrossRefGoogle Scholar
  25. Lin, A. (1985): Int. J. Numer. Methods Fluids 5, 381–391ADSMATHCrossRefGoogle Scholar
  26. Markham, G. (1984): “A Survey of Preconditioned Conjugate-Gradient-type Methods Applied to Asymmetric Systems”, CERL Report TPRD/L/AP 137/M83Google Scholar
  27. Ortega, J.M., Rheinboldt, W.C. (1970): Iterative Solution of Nonlinear Equations in Several Variables ( Academic, New York )MATHGoogle Scholar
  28. Powell, M.J.D. (1976): “A View of Unconstrained Optimization”, in Optimization in Action, ed. by L.C.W. Dixon ( Academic, London ) pp. 117–152Google Scholar
  29. Rheinboldt, W.C. (1974): “On the Solution of Large, Sparse Sets of Nonlinear Equations”, TR-324, University of MarylandGoogle Scholar
  30. Rubin, S.G., Khosla, P.K. (1981): Comp. Fluids 9, 163–180MathSciNetMATHCrossRefGoogle Scholar
  31. Schneider, G.E., Zedan, M. (1981): Numer. Heat Transfer 4, 1–19ADSGoogle Scholar
  32. Shanno, D.F. (1983): Comput. Chem. Eng. 7, 569–574CrossRefGoogle Scholar
  33. Sonneveld, P., Wesseling, P., de Zeeuw, P.M. (1985): In Multigrid Methods for Integral and Differential Equations, ed. by D.J. Paddon, H. Holstein ( Oxford Science Publications, Oxford ) pp. 117–167Google Scholar
  34. Stone, H.L. (1968): SIAM J. Numer. Anal. 5, 530–558MathSciNetADSMATHCrossRefGoogle Scholar
  35. Stuben, K., Trottenberg, U. (1982): In Multigrid Methods, ed. by W. Hackbusch, U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 ( Springer, Berlin, Heidelberg )Google Scholar
  36. Swartztrauber, P.N. (1977): SIAM Rev. 19, 490–501MathSciNetCrossRefGoogle Scholar
  37. Varga, R. (1962): Matrix Iterative Analysis ( Prentice-Hall, Englewood Cliffs, N.J. )Google Scholar
  38. Vinsome, P.K.W. (1976): “ORTHOMIN, An Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations”, in Proc. 4th Symp. on Reservoir Engineering ( SPE of AIME, Los Angeles ) pp. 150–159Google Scholar
  39. Wachpress, E.L. (1966): Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics ( Prentice-Hall, Englewood Cliffs, N.J. )Google Scholar
  40. Zedan, M., Schneider, G.E. (1985): Numer. Heat Transfer 8, 537–557ADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Clive A. J. Fletcher
    • 1
  1. 1.Department of Mechanical EngineeringThe University of SydneyAustralia

Personalised recommendations