Physical Aspects of Eye Plaque Brachytherapy Using Photon Emitters

  • Lowell L. Anderson
  • Sou-Tung Chiu-Tsao
Part of the Medical Radiology book series (MEDRAD)

Abstract

The current trend toward the use of 125I seed rather than 60Co applicators in the treatment of ocular tumors stems largely from the extent to which photons from the two radionuclides are attenuated differently by plaque material on the one hand and by intraocular tissue on the other. The much lower energies of 125I photons from seeds in a rimmed gold plaque not only permit near-total elimination of radiation dose in orbital tissue adjacent to the plaque but also allow significant dose reduction to critical structures within the eye, relative to either 60Co plaque or proton beam reatment (Fairchild 1984). Although other photon-emitting radionuclides have been used in ophthalmic applicators (Luxton et al. 1988a), we will focus attention here on the physical characteristics of 60Co and 125I applicators because they have been the most widely used and because they illustrate well the pertinent differences between “high energy” and “low energy” photons for this type of brachytherapy.

Keywords

Anisotropy Attenuation Platinum Cobalt Mold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrahan M, Liggett P, Petrovich Z, Luxton G (1988) A 500 kHz localized current field hyperthermia system for use with ophthalmic plaque radiotherapy. Recent Results Cancer Res 107:93–98PubMedGoogle Scholar
  2. Astrahan MA, Luxton G, Gabor J, Kampp TD, Liggett PE, Sapozink MD, Petrovich Z (1990) An interactive treatment planning system for ophthalmic plaque radiotherapy. Int J Radiat Oncol Biol Phys 18:679–687PubMedCrossRefGoogle Scholar
  3. Beddoe AH (1972) Exposure distributions from 60Co ophthalmic applicator. Br J Radiol 45:157PubMedCrossRefGoogle Scholar
  4. Beddoe AH (1975) Isoexposure curves for 60Co ophthalmic applicators. Australas Radiol 19:145–151PubMedCrossRefGoogle Scholar
  5. Casebow MP (1971) The calculation and measurement of exposure distributions from 60Co ophthalmic applicators. Br J Radiol 44:618–624PubMedCrossRefGoogle Scholar
  6. Chan B, Rotman M, Randall GJ (1972) Computerized dosimetry of 60Co ophthalmic applicators. Radiology 103:705–707PubMedGoogle Scholar
  7. Chiu-Tsao ST, O’Brien K, Sanna R et al. (1986) Monte Carlo dosimetry for 125I and 60Co in eye plaque therapy. Med Phys 13:678–682PubMedCrossRefGoogle Scholar
  8. Chiu-Tsao ST, Anderson LL, Stabile L (1988) TLD dosimetry for 125I eye plaque. Phys Med Biol 33 [Suppl 1]:128Google Scholar
  9. Chiu-Tsao ST, Anderson LL, O’Brien K, Sanna R (1990) Dose rate determination for 125I seeds. Med Phys 17: 815–825PubMedCrossRefGoogle Scholar
  10. Coleman DJ, Lizzi FL, Burgess SEP et al. (1986) Ultrasonic hyperthermia and radiation in the management of intraocular malignant melanoma. Am J Ophthalmol 101:635–642PubMedGoogle Scholar
  11. Cygler J, Szanto J, Soubra M, Rogers DWO (1990) Effects of gold and silver backings on the dose rate around an 125I seed. Med Phys 17:172–178PubMedCrossRefGoogle Scholar
  12. Earle J, Kline RW, Robertson DM (1987) Selection of iodine 125 for the collaborative ocular melanoma study. Arch Ophthalmol 105:763–764PubMedCrossRefGoogle Scholar
  13. Fairchild RG (1984) New radiotherapeutic techniques in nuclear ophthalmology. Sem Nucl Med 14:35–45CrossRefGoogle Scholar
  14. Finger PT, Packer S, Svitra PP, Paglione RW, Anderson LL, Kim JH, Jacobiec FA (1985) Thermoradiotherapy for intraocular tumors. Arch Ophthalmol 103:1574–1578PubMedCrossRefGoogle Scholar
  15. Finger PT, Packer S, Paglione RW, Gatz JF, Ho TK, Bosworth JL (1989) Thermoradiotherapy of choroidal melanoma: clinical experience. Ophthalmology 96:1384–1388PubMedGoogle Scholar
  16. Goitein M, Miller T (1983) Planning proton therapy of the eye. Med Phys 10:275–283PubMedCrossRefGoogle Scholar
  17. Harnett AN, Thomson ES (1988) An iodine-125 plaque for radiotherapy of the eye: manufacture and dosimetric considerations. Br J Radiol 61:835–838PubMedCrossRefGoogle Scholar
  18. Houdek PV, Schwade JG, Medina AJ et al. (1989) MR technique for localization and verification procedures in episcleral brachytherapy. Int J Radiat Oncol Biol Phys 17:1111–1114PubMedCrossRefGoogle Scholar
  19. Innes G (1962) The application of physics in the treatment of ocular neoplasms. In: Boniuk M (ed) Ocular and adnexal tumors. CV Mosby, St. Louis, p 142Google Scholar
  20. Interstitial Collaborative Working Group: Anderson LL, Nath R, Weaver KA et al. (1990) Interstitial brachy-therapy: physical, biological and clinical considerations. Raven, New YorkGoogle Scholar
  21. Karolis C, Amies C, Frost RB, Billson FA (1989) The development of a thin stainless steel eye plaque to treat tumours of the eye up to 15 mm in diameter. Australas Phys Eng Sci Med 12:172–177PubMedGoogle Scholar
  22. Karolis C, Frost RB, Billson FA (1990) A thin I-125 seed eye plaque to treat intraocular tumors using an acrylic insert to precisely position the sources. Int J Radiat Oncol Biol Phys 18:1209–1213PubMedCrossRefGoogle Scholar
  23. Kepka AG, Johnson PM, Kline RW (1988) The generalized geometry of eye plaque therapy. Med Phys 15:375–379PubMedCrossRefGoogle Scholar
  24. Ling CC, Chen GT, Boothby JW et al. (1989) Computer assisted treatment planning for 125I ophthalmic plaque radiotherapy. Int J Radiat Oncol Biol Phys 17:405–410PubMedCrossRefGoogle Scholar
  25. Luxton G, Astrahan MA, Liggett PE, Neblett DL, Cohen DM, Petrovich Z (1988a) Dosimetric calculations and measurements of gold plaque ophthalmic irradiators using iridium-192 and iodine-125 seeds. Int J Radiat Oncol Biol Phys 15:167–176PubMedCrossRefGoogle Scholar
  26. Luxton G, Astrahan MA, Petrovich Z (1988b) Backscatter measurements from a single seed of 125I for ophthalmic plaque dosimetry. Med Phys 15:397–400PubMedCrossRefGoogle Scholar
  27. Magnus L (1967) Tiefendosisberechnung für die 60Co-Augenapplikatoren CKA 1–4 (nach Stallard). Strahlentherapie 132:379–386PubMedGoogle Scholar
  28. Magnus L, Göbbeler T, Strötges (1968) Tiefendosisberechnung für die 60Co-Augenapplikatoren CKA 5–11 (nach Stallard). Strahlentherapie 136:170–177PubMedGoogle Scholar
  29. Magnus L, Göbbeler T, Rassow J, Strötges W (1969) Isodosenmessungen an den Kobalt-60-Augenapplikatoren (nach Stallard): die Isodosen bei den Applikatoren CKA 1–4. Radiol Clin Biol 38:213–227PubMedGoogle Scholar
  30. Meisberger LJ, Keller RJ, Shalek RJ (1968) The effective attenuation in water of the gamma rays of gold 198, iridium 192, cesium 137, radium 226, and cobalt 60. Radiology 90:953–957PubMedGoogle Scholar
  31. Packer S, Rotman M (1980) Radiotherapy of choroidal melanoma with iodine-125. Ophthalmology 87:582–590PubMedGoogle Scholar
  32. Packer S, Fairchild RG, Salanitro P (1987) New techniques for iodine-125 radiotherapy of intraocular tumors. Ann Ophthalmol 19:26–30PubMedGoogle Scholar
  33. Rassow J, Strüter H-D, Magnus L, Göbbeler T (1970) Isodosenmessungen an den Kobalt-60-Augenapplikatoren (nach Stallard): allgemeine Berechnung der Tiefendosis für kreisförmige Flächenaktivitäten und die Messung der Isodosen für die Applikatoren CKA 8–11. Radiol Clin Biol 39:32–46PubMedGoogle Scholar
  34. Schell MC, Weaver KA, Phillips TL, Char DH, Quivey JM, Barnett C, Ling CC (1989) Design of iodine-125 eye plaques for radiation therapy. Endocurietherapy/ Hyperthermia Oncology 5:83–90Google Scholar
  35. Sealy R, le Roux PLM, Rapley F, Hering E, Shackleton D, Sevel D (1976) The treatment of ophthalmic tumours with low-energy sources. Br J Radiol 49:551–554PubMedCrossRefGoogle Scholar
  36. Sealy R, Buret E, Cleminshaw H et al. (1980) Progress in the use of iodine therapy for tumours of the eye. Br J Radiol 53:1052–1060PubMedCrossRefGoogle Scholar
  37. Task Group 32: Nath R, Anderson L, Jones D, Ling C, Loevinger R, Williamson J, Hanson W (1987) Specification of brachytherapy source strength, AAPM Report No. 21. American Institute of Physics, New YorkGoogle Scholar
  38. Weaver KA (1986) The dosimetry of 125I seed eye plaques. Med Phys 13:78–83PubMedCrossRefGoogle Scholar
  39. Wu A, Sternick ES, Muise DJ (1988) Effect of gold shielding on the dosimetry of an 125I seed at close range. Med Phys 15:627–628PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Lowell L. Anderson
    • 1
  • Sou-Tung Chiu-Tsao
    • 2
  1. 1.Department of Medical PhysicsMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Physics Division Department of Radiation OncologyHenry Ford HospitalDetroitUSA

Personalised recommendations