Skip to main content

Part of the book series: Nachrichtentechnik ((NACHRICHTENTECH,volume 16))

  • 62 Accesses

Zusammenfassung

Durch ihre hohe Übertragungsbandbreite und ihre geringe Dämpfung sowie durch weitere günstige Eigenschaften, s. Kapitel 1, sind Lichtwellenleiter ein sehr vorteilhaftes Medium für die Übertragung von Breitbandsignalen über große Entfernungen. Zu einem vollständigen Übertragungssystem gehören aber neben dem Übertragungsmedium auch geeignete Sender und Empfänger, die in ihren Abmessungen und Betriebsdaten an das Übertragungsmedium angepaßt sind, sowie zusätzliche Bauteile, wie z.B. Steckverbindungen, Koppel- und Verzweigungselemente. Eine Übersicht über diese Systembestandteile sowie ausführliche Literaturverzeichnisse findet man in [7.1,7.2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Botez, D.; Herskowitz, G.J.: Components for optical communications systems: a review. Proc. IEEE 68 (1980) 689–731

    Article  Google Scholar 

  2. Suematsu, Y.: Long-wavelength optical fiber communication. Proc. IEEE 71 (1983) 692–721

    Article  Google Scholar 

  3. Geckeler, S.: Modelling of fiber-optic transmission systems on a desk-top computer. Siemens Forsch.-u. Entw.-Ber. 12 (1983) 127–134

    Google Scholar 

  4. Bjerkan, L.: Pulse dispersion measurements on concatenated cabled optical fibers at 1.3 μm. Journ. Opt. Comm. 5 (1984) 20–26

    Google Scholar 

  5. Personick, S.D.: Receiver design for digital fiber optic communication systems I. Bell Syst. Tech. Journ. 52(1973)843–874

    Google Scholar 

  6. Smith, D.R.; Garrett, I.: A simplified approach to digital optical receiver design. Opt. Quant. Electron. 10 (1978) 211–221

    Article  Google Scholar 

  7. Winstel, G.; Weyrich, C.: Optoelektronik I, Lumineszenz-und Laserdioden. Berlin: Springer 1980

    Book  Google Scholar 

  8. Weyrich, C.; Zschauer, K.H.: Grundlagen der elektrooptischen Signalumwandlung. telcom report 6 (1983), Sonderheft, 15–20

    Google Scholar 

  9. Harth, W.; Grothe, H.: Sende-und Empfangsdioden für die optische Nachrichtentechnik. Stuttgart: Teubner 1984

    Google Scholar 

  10. Burrus, C.A.; Miller, B.I.: Small-area double-heterostucture aluminum-gallium arsenide electroluminescent diode sources for optical-fiber transmission lines. Opt. Comm. 4 (1971) 307–309

    Article  Google Scholar 

  11. Heinen, J.; Lauterbach, Ch.: High-radiance surface-emitting InGaAsP/InP IREDs with an emission wavelength of 1.3 μm for transmission rates of 34 Mbitls and 140 Mbitls. Siemens Forsch.-u. Entw.-Ber. 11 (1982) 209–215

    Google Scholar 

  12. Clemen, C.; Heinen, J.; Plihal, M.: Lumineszenzdioden hoher Strahldichte für optische Sender. telcom report 6 (1983), Sonderheft, 77–83

    Google Scholar 

  13. Temkin, H., et al.: InGaAsP LEOs for 1.3 μm optical transmission. Bell Syst. Tech. Journ. 62 (1983) 1–24

    Google Scholar 

  14. Saul, R.H.: Recent advances in the performance and reliability of InGaAsP LEOs for lightwave communication systems. IEEE Trans. ED-30 (1983) 285–295

    Google Scholar 

  15. Suzuki, A., et al.: Gbit/s modulation of heavily Zn-doped surface-emitting InGaAsP/InP DH LED. Electron.Lett. 20 (1984) 273–274

    Article  Google Scholar 

  16. Hudson, M.C.: Calculation of the maximum optical coupling efficiency into multimode optical waveguides. Appl. Opt. 13 (1974) 1029–1033

    Article  Google Scholar 

  17. Arnold, G., et al.: Edge-emitting LEOs at 1.3 μm wavelength of different active length. Tagungsband ECOC’84, Stuttgart 1984, 6B5, 154–155

    Google Scholar 

  18. Dutta, N.K., et al.: Optical properties of a 1.3 μm InGaAsP superluminescent diode. IEEE Trans. ED-30 (1983) 360–363

    Google Scholar 

  19. Botez, D.: Single-mode lasers for optical communications. IEE Proc. 129,I (1982) 237–251

    Google Scholar 

  20. Amann, M.C.: New contacting system for low-expense GaAs-A1GaAs light sources. Frequenz 34 (1980) 343–346

    Article  Google Scholar 

  21. Amann, M.C.; Mettler, K.; Wolf, H.D.: Laserdioden — Sendebauelemente hoher Lichtleistung für die optische Nachrichtenübertragung. telcom report 6 (1983), Sonderheft, 84–89

    Google Scholar 

  22. Althaus, H.L.; Kuhn, G.: Lasersender in Modulbauweise. telcom report 6 (1983), Sonderheft, 90–96

    Google Scholar 

  23. Petermann, K.: Calculated spontaneous emission factor for double-heterostructure injection lasers with gain induced wave guiding. IEEE Journ. QE-15 (1979) 566–570

    Article  MathSciNet  Google Scholar 

  24. Streifer, W.: Spontaneous emission factor of narrow-stripe gain-guided diode lasers. Electron. Lett. 17 (1981) 933–934

    Article  Google Scholar 

  25. Wenke, G.; Enning, B.: Spectral behaviour ofInGaAsP/InP 1.3 μm lasers and implications on the transmission performance of broadband Gbitls signals. Journ. Opt. Comm. 3 (1982) 122–128

    Article  Google Scholar 

  26. Kuwahara, H.; Imai, H.; Sasaki, M.: Intensity noise of InGaAsPllnP lasers under the influence of reflection and modulation. Opt. Comm. 46 (1983) 315–322

    Article  Google Scholar 

  27. Keil, R., et al.: Coupling between semiconductor laser diodes and single-mode optical fibers. Siemens Forsch.-u. Entw.-Ber. 13 (1984) 284–288

    Google Scholar 

  28. Mathyssek, K.; Keil, R.; Klement, E.: New coupling arrangement between laser diode and single-mode fiber with high coupling efficiency and particularly low feedback effect. Tagungsband ECOC’84, Stuttgart 1984, 10A5, 186–187

    Google Scholar 

  29. Wagner, R.E.; Sandahl, C.R.: Interference effects in optical fiber connections. Appl. Opt. 21 (1982) 1381–1385

    Article  Google Scholar 

  30. Sugie, T.; Saruwatari, M.: An effective nonreciprocal circuit for semiconductor laser-tofiber coupling using a YIG-sphere. IEEE Journ. LT-1 (1983) 121–130

    Google Scholar 

  31. Stegmüller, B.: Influence of lateral waveguiding properties on the longitudinal mode spectrum for semiconductor lasers. Appl. Phys. Lett. 42 (1983) 15–16

    Article  Google Scholar 

  32. Bell, T.E.: Single-frequency semiconductor lasers. IEEE spectrum (1983) 38–45

    Google Scholar 

  33. Suematsu, Y.; Arai, S.; Kishino, K.: Dynamic single-mode semiconductor lasers with a distributed reflector. IEEE Journ. LT-1 (1983) 161–175

    Google Scholar 

  34. Kitamura, M., et al.: High-performance single-longitudinal mode operation of InGaAsP/InP DFB-DC-PBH laser diodes. IEEE Journ. LT-2 (1984) 363–369

    Google Scholar 

  35. Baak, C., et al.: Digital and analog optical broad-band transmission. Proc. IEEE 71 (1983) 198–208

    Article  Google Scholar 

  36. Grau, G.: Schwankungserscheinungen als prinzipielle und praktische Leistungsgrenzen optischer Nachrichtensysteme. Arch. Elektron. Übertr. 37 (1983) 137–145

    Google Scholar 

  37. Hirota, O.; Suematsu, Y.; Kwok, K.: Properties of intensity noises of laser diodes due to reflected waves from single-mode optical fibers and its reduction. IEEE Journ. QE-17 (1981) 1014–1020

    Article  Google Scholar 

  38. Lin, C.; Tomita, A.: Chirped picosecond injection laser pulse transmission in single-mode fibres in the minimum chromatic dispersion region. Electron. Lett. 19 (1983) 837–838

    Article  Google Scholar 

  39. Okano, Y.; Nakagawa, K.; Ito, T.: Laser mode partition noise evaluation for optical fiber transmission. IEEE Trans. COM-28 (1980) 238–243

    Article  Google Scholar 

  40. Ogawa, K.: Analysis of mode partition noise in laser transmission systems. IEEE Journ. QE-18 (1982) 849–855

    Article  Google Scholar 

  41. Ogawa, K.: Considerations for single-mode fiber systems. Bell Syst. Tech. Journ. 61 (1982) 1919–1931

    Google Scholar 

  42. Ogawa, K.; Vodhanel, R.S.: Measurements of mode partition noise of laser diodes. IEEE Journ. QE-18 (1982) 1090–1093

    Article  Google Scholar 

  43. Papoulis, A.: Probality, Random Variables, and Stochastic Processes. New York: McGraw Hill 1965

    Google Scholar 

  44. Fisz, M.: Wahrscheinlichkeitsrechnung und Statistik. Berlin: VEB Deutscher Verlag der Wissenschaften, 9. Auflage 1978

    Google Scholar 

  45. Copeland, J.A.: Fluctuations in semiconductor laser emissions. Journ. Appl. Phys. 54 (1983) 2813–2819

    Article  Google Scholar 

  46. Lang, R.: External feedback effects on the dynamic behaviour of Fabry-Perot and DFB diode lasers. Tagungsband CLEO’84, Anaheim 1984, FF7, 232

    Google Scholar 

  47. Petermann, K.; Arnold, G.: Noise and distortion characteristics of semiconductor lasers in optical fiber communication systems. IEEE Trans. MTT-30 (1982) 389–401

    Google Scholar 

  48. Epworth, RE.: Modal noise — cause and cures. Laser Focus (1981) 109–115

    Google Scholar 

  49. Tremblay, Y.; Kawasaki, B.S.; Hill, K.O.: Modal noise in optical fibers: open and closed speckle pattern regimes. Appl. Opt. 20 (1981) 1652–1654

    Article  Google Scholar 

  50. Freude, W.; Grau, G.: Estimation of modal noise for arbitrary connectors, fibres and sources. Arch. Elektron. Übertr. 36 (1982) 91–93

    Google Scholar 

  51. Kanada, T.: Evaluation of modal noise in multimode fiber-optic systems. IEEE Journ. LT-2 (1984) 11–18

    Google Scholar 

  52. Couch, P.R; Epworth, RE.: Reproducible modal-noise measurements in system design and analysis. IEEE Journ. LT-1 (1983) 591–596

    Google Scholar 

  53. Elze, G.; Patzak, E.: Modal mode partition noise in optical fiber systems. Journ. Opt. Comm. 3 (1982) 67–69

    Article  Google Scholar 

  54. Heckmann, S.: Modal noise in single-mode fibres operated slightly above cutoff. Electron. Lett. 17 (1981) 499–500

    Article  Google Scholar 

  55. Cheung, N.K.; Tomita, A.; Glodis, P.F.: Observation of modal noise in single-mode fiber transmission systems. Electron. Lett. 21 (1985) 5–6

    Article  Google Scholar 

  56. Plihal, M.; Spath, W.; Trommer, R: Photodioden als optische Empfänger für Lichtwellenleiter-Übertragungssysteme. telcom report 6 (1983), Sonderheft, 97–101

    Google Scholar 

  57. Stillman, G.E., et al.: InGaAsP Photodiodes. IEEE Trans. ED-30 (1983) 364–381

    Google Scholar 

  58. Trommer, R; Kunkel, K.: InGaAsP/InP PIN and avalanche photodiodes for the 1 μm to 1.6 μm wavelength range. Siemens Forsch.-u. Entw.-Ber. 11 (1982) 216–220

    Google Scholar 

  59. Smith, D.R; Hooper, RC.; Garrett, I.: Receivers for optical communications: A comparison of avalanche photodiodes with PIN-FET hybrids. Opt. Quant. Electron. 10 (1978) 293–300

    Article  Google Scholar 

  60. Brain, M.C.: Comparison of available detectors for digital optical fiber systems for the 1.2–1.55 μm wavelength range. IEEE Journ. QE-18 (1982) 219–224

    Article  Google Scholar 

  61. Geckeler, S.: Ein statistisches Modell für das Rauschen in Teilchenströmen und seine Anwendung auf Photodetektoren. Arch. Elektron. Übertr. 26 (1972) 66–72

    Google Scholar 

  62. Personick, S.D.: Receiver design for optical fiber systems. Proc. IEEE 65 (1977) 1670–1678

    Article  Google Scholar 

  63. Smith, RG.; Personick, S.D.: Noise in analog receivers. Laser Focus (1980) 66–69

    Google Scholar 

  64. Webb, P.P.; McIntyre, RJ.; Conradi, J.: Properties of avalanche photodiodes. RCA Rev. 35 (1974) 234–278

    Google Scholar 

  65. Biard, J.R; Shaunfield, W.N.: A model of the avalanche photodiode. IEEE Trans. ED-14 (1967) 233–238

    Google Scholar 

  66. Muoi, T.V.: Receiver design for high-speed optical-fiber systems. IEEE Journ. LT-2 (1984) 243–267

    Google Scholar 

  67. Moustakas, S.; Hullett, J. L.: Noise modelling for broadband amplifier design. IEE Proc. 128 (1981) 67–76

    Google Scholar 

  68. O’Mahony, M.J.: The analysis and optimisation of a PIN photodiode GaAs FET cascode optical receiver. Brit. Telecom Technol. Journ. 1 (1983) 38–42

    Google Scholar 

  69. Aytac, S., Schlachetzky, A.: Broadband amplifier with bipolar transistors for optical receivers. Journ. Opt. Comm. 3 (1982) 107–110

    Article  Google Scholar 

  70. Dippold, M.: Empfänger für schnelle digitale Glasfaserübertragung mit quantisierter Rückkopplung. Arch. Elektron. Übertr. 37 (1983) 15–24

    Google Scholar 

  71. Garrett, I.: Towards the fundamental limits of optical fiber communications. IEEE Journ. LT-1(1983) 131–138

    Google Scholar 

  72. Geckeler, S.: Der Quantenzähler, ein Empfänger für Nachrichtenübertragung mit minimalem Energieaufwand. Arch. Elektron. Übertr. 23 (1969) 137–146

    Google Scholar 

  73. Yamamoto, Y.; Kimura, T.: Coherent optical fiber transmission systems. IEEE Journ. QE-17 (1981) 919–935

    Article  Google Scholar 

  74. Okoshi, T., et al.: Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes. Journ. Opt. Comm. 2 (1981) 89–96

    Article  Google Scholar 

  75. Held, H.J.: Fehlersicherheit binärer Übertragungen bei verschiedenen Modulationsarten. Nachr. tech. Zeitschr. 11 (1958) 286–292

    Google Scholar 

  76. Kimura, T.; Yamamoto, Y.: Progress of coherent optical fibre communication systems. Opt. Quant. Electron. 15 (1983) 1–39

    Article  Google Scholar 

  77. Agrawal, G.P.: Line narrowing in a single-mode injection laser due to external optical feedback. IEEE Journ. QE-20 (1984) 468–471

    Article  Google Scholar 

  78. Kikuchi, K., et al.: Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator. IEEE.Journ. LT-2 (1984) 1024–1033

    Google Scholar 

  79. Okoshi, T.: Recent progress in heterodyne/coherent optical fiber communications. IEEE Journ. LT-2 (1984) 341–346

    Google Scholar 

  80. Emura, K., et al.: Novel optical FSK heterodyne single filter detection system using a directly modulated DFB-laser diode. Electron. Lett. 20 (1984) 1022–1023

    Article  Google Scholar 

  81. Wyatt, R, et al.: 140 Mbit/s optical FSK fibre heterodyne experiment at 1.54 μm. Electron. Lett. 20 (1984) 912–913

    Article  Google Scholar 

  82. Mazurcyk, V.J., et al.: 420 Mbit/s transmission through 203 km using silica-core fiber and a DFB laser. Tagungsband ECOC’84, Stuttgart 1984, PD–7

    Google Scholar 

  83. Jones, J.R: A comparison of lightwave, microwave, and coaxial transmission technologies. IEEE Trans. MTT-30 (1982) 1512–1524

    Google Scholar 

  84. Simon, J.C.: Semiconductor laser amplifier for single-mode optical fiber communications. Journ. Opt. Comm. 4 (1983) 51–62

    Article  Google Scholar 

  85. Webb, RP.; Devlin, W.J.: Travelling-wave laser amplifier experiments at 1.5 μm. Electron. Lett. 20 (1984) 706–707

    Article  Google Scholar 

  86. Mahlein, H.F.: Fiber-optic communication in the wavelength-division multiplex mode. Fiber and Integr. Opt. 4 (1983) 339–372

    Article  Google Scholar 

  87. Winzer, G.: Wavelength-multiplexing components A review of single-mode devices and their applications. IEEE Journ. LT-2 (1984) 369–378

    Google Scholar 

  88. Finley, M.R: Optical fibers in local area networks. IEEE Comm. Magazine 22 (1984) Heft8 (Sonderheft über LAN) 22–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geckeler, S. (1987). Übertragungssysteme mit Lichtwellenleitern. In: Lichtwellenleiter für die optische Nachrichtenübertragung. Nachrichtentechnik, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96974-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96974-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16971-0

  • Online ISBN: 978-3-642-96974-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics