Skip to main content

Tierexperimentelle neurophysiologische Untersuchungen zur Lithiumwirkung

  • Chapter
Die Lithiumtherapie Nutzen, Risiken, Alternativen

Synopsis

  1. 1.

    Tierexperimentelle neurophysiologische Befunde zur Lithiumwirkung lassen bisher keine eindeutigen Rückschlüsse auf einen bestimmten therapeutisch relevanten Wirkmechanismus zu.

  2. 2.

    In einer Vielzahl von Untersuchungen konnten Einflüsse von Lithium auf das Ionenmilieu gezeigt werden. Nach dem derzeitigen Stand der Forschung sprechen die Untersuchungsergebnisse für eine Lithium-abhängige Erhöhung der Konzentration des extrazellulären Kalium, sowie entsprechend für eine Erniedrigung der intrazellulären Kaliumkonzentration. Daneben wurde unter Lithium eine Zunahme von intrazellulären ionisierten Kalziumionen und eine Abnahme in der intrazellulären Natriumkonzentration gemessen. Hierbei zugrundeliegende mögliche Interaktionen von Lithium mit transmembranalen Transportmechanismen werden noch diskutiert.

  3. 3.

    Veränderungen der Zellerregbarkeit, der Impulsfortleitung sowie der interneuronalen Verschaltung (elektrisch-biochemischer Art) können vor dem Hintergrund dieser ionalen Veränderungen erklärt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aldenhoff JB, Lux HD (1984) Lithium und kalziumabhängige Zellfunktionen. Der Beitrag eines membranphysiologischen Untersuchungsansatzes zur Erklärung therapeutischer Lithiumwirkungen. Fortschr Neurol Psychiat 52:152–163

    Article  PubMed  CAS  Google Scholar 

  • Dose M, Deisz RA (1982) Lithium effects on the G AB A synapse of grayfish stretch receptor neurones. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 175–182

    Google Scholar 

  • Dose M, Emrich HM, Cording-Tömmel C, Zerssen D von (1983) Calciumantagonists in mania: A preliminary clinical report. In: Pichot P, Berner P, Wolf R (eds) Psychiatry: A state of the art, vol 3. Plenum, New York London, pp 501–506

    Google Scholar 

  • Duhm J (1982) Note on the interaction of lithium ions with the transport function of the sodium/potassium-pump. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 21–27

    Google Scholar 

  • Ehrlich BE, Diamond JM (1980) Lithium, membranes and manic-depressive illness. J Membrane Biol 52:187–200

    Article  CAS  Google Scholar 

  • Emrich HM, Günther R, Dose M (1983) Current perspectives in the pharmaco-psychiatry of depression and mania. Neuropharmacology 22:385–388

    Article  PubMed  CAS  Google Scholar 

  • Gallager DW, Pert A, Bunney WE Jr (1978) Haloperidol induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273:309–312

    Article  PubMed  CAS  Google Scholar 

  • Gräfe P, Reddy MM, Emmert H, Bruggencate G ten (1983) Effects of lithium on electrical activity and potassium ion distribution in the vertebrate central nervous system. Brain Res 279:65–76

    Article  PubMed  Google Scholar 

  • Haas HL (1982) Lithium and synaptic transmission in the mammalian brain. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 71–79

    Google Scholar 

  • Hertog A Den, Ploeger HJ (1973) Mechanism of action of lithium salts. Psychiat Neurol Neurochir 76:529–535

    Google Scholar 

  • Koketsu K, Yamamoto K (1974) Effects of lithium ions on electrical activity in sympathetic ganglia of the bullfrog. Brit J Pharmacol 50:69–77

    CAS  Google Scholar 

  • Krnjevic K, Morris ME (1975) Factors determining the decay of K+-potentials and focal potentials in the central nervous system. Can J Physiol Pharmacol 53:923–934

    Article  PubMed  CAS  Google Scholar 

  • Ploeger EJ (1974) The effects of lithium on excitable cell membranes. On the mechanism of inhibition of the sodium-pump of non-myelinated nerve fibres of the rat. Eur J Pharmacol 25:316–321

    Article  PubMed  CAS  Google Scholar 

  • Polc P (1982) Effects of lithium and valproate on the cat spinal cord. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 193–201

    Google Scholar 

  • Reiser G, Duhm J (1982) Transport pathway for lithium ions in neuroblastoma and glioma hybrid cells at “therapeutic” concentrations of lithium. Brain Res 252:247–258

    Article  PubMed  CAS  Google Scholar 

  • Richelson E (1977) Lithium ion entry through the sodium channel of cultured neuroblastoms cells: A biochemical study. Science 198:1001–1002

    Article  Google Scholar 

  • Segal M (1974) Lithium and the monoamine neurotransmitters in the rat hippocampus. Nature 250:71–72

    Article  PubMed  CAS  Google Scholar 

  • Schultz JE, Siggins GR, Schocker FW, Türck M, Bloom FE (1981) Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: Electrophysiological and biochemical comparison. J Pharmacol Exptl Ther 216:28–38

    CAS  Google Scholar 

  • Thellier M, Heurteux C, Wissocq J-C (1980) Quantitative study of the distribution of lithium in the mouse brain for various doses of lithium given to the animal. Brain Res 199:175–196

    Article  PubMed  CAS  Google Scholar 

  • Thomas RC (1969) Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J Physiol 201:495–514

    PubMed  CAS  Google Scholar 

  • Ullrich A, Baierl P, Bruggencate G ten (1980) Extracellular potassium in rat cerebellar cortex during acute and chronic lithium application. Brain Res 192:287–290

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Baierl P, Bruggencate G ten (1982) Effects of acute and chronic lithium application upon extracellular potassium and calcium in rat cerebellum. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 80–91

    Google Scholar 

  • Walz W, Hertz L (1982) Acute and chronic effects of lithium in therapeutically relevant concentrations on potassium uptake into astrocytes. Psychopharmacology 78:309–313

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ullrich, A. (1986). Tierexperimentelle neurophysiologische Untersuchungen zur Lithiumwirkung. In: Müller-Oerlinghausen, B., Greil, W. (eds) Die Lithiumtherapie Nutzen, Risiken, Alternativen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96935-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96935-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96936-2

  • Online ISBN: 978-3-642-96935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics