Advertisement

Cholangiofibroma and Cholangiocarcinoma, Liver, Rat

  • Peter Bannasch
  • Ulger Benner
  • Heide Zerban
Part of the Monographs on Pathology of Laboratory Animals book series (LABORATORY)

Abstract

Both cholangiofibroma and cholangiocarcinoma appear macroscopically as firm nodules frequently distributed in the liver in a multinodular fashion (Fig. 41). The tumor tissue usually has a grayish-white color and may also have yellow areas. The macroscopic picture may become very complex and colorful when the cholangiocellular tumors are combined with hepatocellular carcinomas or malignant mesenchymal tumors, such as angiosarcomas.

Synonyms

Nodules of cholangiofibrosis cholan-giocellular carcinoma cholangiolar adenocarcinoma bile duct carcinoma malignant cholangioma adenocarcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bannasch P (1975) Die Cytologie der Hepatocarcinoge-nese. In: Grundmann E (ed) Geschwülste/Tumors IL Springer, Berlin Heidelberg New York, pp 123–276 (Handbuch der allgemeinen Pathologie, vol 6/7)Google Scholar
  2. Bannasch P (1978) Cellular and subcellular pathology of liver carcinogenesis. In: Remmer H, Bolt P, Bannasch P, Popper H (eds) Primary liver tumors. University Park, Baltimore, pp 87–111Google Scholar
  3. Bannasch P (1980) Dose-dependence of early cellular changes during liver carcinogenesis. Arch Toxicol (Suppl 3): 111–128CrossRefGoogle Scholar
  4. Bannasch P (1984) Sequential cellular changes during chemical carcinogenesis. J Cancer Res Clin Oncol 108: 11–22PubMedCrossRefGoogle Scholar
  5. Bannasch P, Massner B (1976) Histogenèse und Cytoge-nese von Cholangiofibromen und Cholangiocareino-men bei Nitrosomorpholin-vergifteten Ratten. Z Krebsforsch 87: 239–255CrossRefGoogle Scholar
  6. Bannasch P, Massner B (1977) Die Feinstruktur des Nitro-somorpholin-induzierten Cholangiofibroms der Ratte. Virchows Arch (Cell Pathol) 24: 295–315Google Scholar
  7. Bannasch P, Reiss W (1971) Histogenèse und Cytogenese cholangiocellulärer Tumoren bei Nitrosomorpholin-vergifteten Ratten. Zugleich ein Beitrag zur Morphogenese der Cystenleber. Z Krebsforsch 76:193–215CrossRefGoogle Scholar
  8. Bannasch P, Zerban H, Schmid E, Franke WW (1980) Liver tumors distinguished by immunofluorescence microscopy with antibodies to proteins of intermediate-sized filaments. Proc Natl Acad Sci USA 77:4948–4952PubMedCrossRefGoogle Scholar
  9. Bannasch P, Benner U, Hacker HJ, Klimek F, Mayer D, Moore M, Zerban H (1981a) Cytochemical and biochemical microanalysis of carcinogenesis. Histochem J 13:799–820PubMedCrossRefGoogle Scholar
  10. Bannasch P, Zerban H, Schmid E, Franke WW (1981b) Characterization of cytoskeletal components in epithelial and mesenchymal liver tumors by electron and immunofluorescence microscopy. Virchows Arch (Cell Pathol) 36:139–158CrossRefGoogle Scholar
  11. Bannasch P, Hacker HJ, Klimek F, Mayer D (1984) Hepatocellular glycogenosis and related pattern of enzymatic changes during hepatocarcinogenesis. Adv Enzyme Reguł 22:97–121PubMedCrossRefGoogle Scholar
  12. Benner U, Hacker HJ, Bannasch P (1979) Zur Bedeutung der sogenannten ovalen Zelle für die Hepatocarcinoge-nese. Verh Dtsch Ges Pathol 63: 514Google Scholar
  13. Benner U, Moll R, Bannasch P (1984) Discrimination of oval cells and hepatocytees by immunofluorescence microscopy using antibodies to different cytokeratins. Eur J Cell Biol 33 (Suppl 5): 7Google Scholar
  14. Butler WH (1971) Pathology of liver cancer in experimental animals. In: Liver cancer. I ARC Sci Publ no 1, Lyon, pp 30–41Google Scholar
  15. Butler WH, Jones G (1978) Ultrastructure of hepatic neoplasia. In: Newberne PM, Butler WH (eds) Rat hepatic neoplasia. MIT Press, Cambridge MA, chap 7, pp 144–179Google Scholar
  16. Chou ST, Gibson JB (1970) The histochemistry of biliary mucins and the changes caused by infestation by Clonorchis sinensis. J Pathol 101:185–197CrossRefGoogle Scholar
  17. Chou ST, Gibson JB (1972) A comparative histochemical study of rat livers in alpha-naphthyl-iso-thiocyanate (ANIT) and DL-ethionine intoxication. J Pathol 108: 73–83PubMedCrossRefGoogle Scholar
  18. David H (1962) Die submikroskopische Struktur des DMAB-induzierten cholangiocellularen Lebercarci-noms der Ratte. Z Krebsforsch 65:130–138PubMedCrossRefGoogle Scholar
  19. Della Porta G, Shubik P, Scortecci V (1959) The action of N-2-fluorenylacetamide in the Syrian golden hamster. JNCI 22:463–487Google Scholar
  20. Dominis M, Damjanov I (1977) Cystic cholangioflbrosis of the liver. Arch Geschwulstforsch 47: 661–669PubMedGoogle Scholar
  21. Farber E (1956) Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene and 3’-methyl-4-dimethyl-aminoazobenzene. Cancer Res 16:142–148PubMedGoogle Scholar
  22. Färber E, Cameron R (1980) The sequential analysis of cancer development. Adv Cancer Res 31:125–226PubMedCrossRefGoogle Scholar
  23. Firminger HI (1955) Histopathology of carcinogenesis and tumors of the liver in rats. JNCI 15:1427–1442PubMedGoogle Scholar
  24. Firminger HI, Mulay AS (1952) Histochemical and morphologic differentiation of induced tumors of the liver in rats. JNCI 13:19–33PubMedGoogle Scholar
  25. Grisham JW, Hartroft WS (1961) Morphologic identification by electron microscopy of “oval” cells in experimental hepatic degeneration. Lab Invest 10: 317–332PubMedGoogle Scholar
  26. Grisham JW, Porta EA (1964) Origin and fate of proliferated hepatic ductal cells in the rat: electron microscopic and autoradiographic studies. Exp Mol Pathol 3: 242–261CrossRefGoogle Scholar
  27. Hutterer F, Rubin E, Singer EJ, Popper H (1961) Quantitative relation of cell proliferation and fibrogenesis in the liver. Cancer Res 21: 206–215PubMedGoogle Scholar
  28. Inaoka Y (1967) Significance of the so-called oval cell proliferation during azo-dye hepatocarcinogenesis. Gann 58:355–366PubMedGoogle Scholar
  29. Ito N, Moore MA, Bannasch P (1984) Modification of the development of N-nitrosomorpholine-induced hepatic lesions by 2-acetylaminofluorene, phénobarbital and 4,4’-diaminodiphenylmethane: a sequential histological and histochemical analysis. Carcinogenesis 5: 335–342PubMedCrossRefGoogle Scholar
  30. Iwasaki T, Dempo K, Kaneko A, Onoe T (1972) Fluctuation of various cell populations and their characteristics during azo-dye carcinogenesis. Gann 63:21–30PubMedGoogle Scholar
  31. Jones G, Butler WH (1978) Light microscopy of rat hepatic neoplasia. In: Newberae PM, Butler WH (eds) Rat hepatic neoplasia. MIT Press, Cambridge, pp 114–140Google Scholar
  32. Kinosita R (1955) Some recent findings concerning hepatomas induced with p-dimethylaminoazobenzene. JNCI 15:1443–1445PubMedGoogle Scholar
  33. Kuhlmann WD (1978) Localization of alphat-fetoprotein and DNA-synthesis in liver cell populations during experimental hepatocarcinogenesis in rats. Int J Cancer 21:368–380PubMedCrossRefGoogle Scholar
  34. Ma MH, Webber AJ (1966) Fine structure of liver tumors induced in the rat by 3’-methyl-4-dimethylaminoazo-benzene. Cancer Res 26:935–946PubMedGoogle Scholar
  35. Moore MR, Pitot HC, Miller EC, Miller JA (1982) Cholan-giocellular carcinomas induced in Syrian golden hamsters administered aflatoxin Bt in large doses. JNCI 68: 271–278PubMedGoogle Scholar
  36. Nakano M (1974) Cholangiofibrosis induced in short-term feeding of 3-methyl-4-dimethylaminoazobenzene. Kanzo 15:292–300CrossRefGoogle Scholar
  37. Ogawa K, Minase T, Onoe T (1974) Demonstration of glucose 6-phosphatase activity in the oval cells of rat liver and the significance of the oval cells in azo dye carcinogenesis. Cancer Res 34: 3379–3386PubMedGoogle Scholar
  38. Onoe T, Fuse Y (1966) Electron microscopic study on azo-dye carcinogenesis. Tumor Res 1:143–173Google Scholar
  39. Opie EL (1944) The pathogenesis of tumors of the liver produced by butter yellow. J Exp Med 80:231–246PubMedCrossRefGoogle Scholar
  40. Pliss GB, Khudoley W (1975) Tumor induction by carcinogenic agents in aquarium fish. JNCI 55:129–136PubMedGoogle Scholar
  41. Popper H, Kent G, Stein R (1957) Ductular cell reaction in the liver in hepatic injury. J Mt Sinai Hosp 24: 551–556Google Scholar
  42. Praet MM, Roels H J (1984) Histogenesis of cholangiomas and cholangiocarcinomas in thioacetamide fed rats. Exp Pathol 26: 3–14PubMedCrossRefGoogle Scholar
  43. Price JM, Harman JW, Miller EC, Miller JA (1952) Progressive microscopic alterations in the livers of rats fed the hepatic carcinogens 3’-methyl-4-dimethylamino-azobenzene and 4’-fluoro-4-dimethylazobenzene. Cancer Res 12:192–200PubMedGoogle Scholar
  44. Reddy KP, Buschmann RJ, Chomet B (1977) Cholangiocarcinomas induced by feeding 3’-methyl-4-dimethy-laminoazobenzene to rats. Am J Pathol 87:189–204PubMedGoogle Scholar
  45. Reuber MD (1967) Poorly differentiated cholangiocarcinomas occurring ‘spontaneously’ in C3H and C3HxY hybrid mice. JNCI 38:901–907PubMedGoogle Scholar
  46. Reznik G, Mohr U (1977) Colangiomas y colangiocarcinomas en el hamster europeo tras tratamiento con di-isopropanol-nitrosamina. Pathologia No Extraordinario (11)10:171–204Google Scholar
  47. Rubin E (1964) The origin and fate of proliferated bile ductular cells. Exp Mol Pathol 3: 279–286CrossRefGoogle Scholar
  48. Scarpelli DG (1975) Neoplasia in poikilotherms. In: Bekker FF (ed) Cancer. A comprehensive treatise, vol 4. Plenum, New York, pp 375–410Google Scholar
  49. Schauer A, Kunze E (1976) Tumours of the liver. In: Turusov VS (ed) Pathology of tumours in laboratory animals, vol I, Tumours of the rat, part II. IARC Sci Publ no 6, Lyon, pp 41–72Google Scholar
  50. Schmahl D, Habs M, Ivankovic S (1978) Carcinogenesis of N-nitrosodiethylamine (DENA) in chickens and domestic cats. Int J Cancer 22: 552–557PubMedCrossRefGoogle Scholar
  51. Shinozuka H, Lombardi B, Sell S, Immarino RM (1978) Early histological and functional alterations of ethio-nine liver carcinogenesis in rats fed a choline-deficient diet. Cancer Res 38:1092–1098PubMedGoogle Scholar
  52. Simon K, Tajti L, Lapis K (1980) Hepatic lesions in Lebistes reticulatus induced by N-nitrosodiethylamine. In: Walker EA, Castegnaro M, Griciute L, Börzsönyi M (eds) N-Nitroso-compounds: analysis, formation and occurrence. IARC Sci Publ no 31, Lyon, pp 717–729Google Scholar
  53. Stanton MF (1965) Diethylnitrosmaine-induced hepatic degeneration and neoplasia in the aquarium fish, Brachydanio reno. JNCI 34:117–130PubMedGoogle Scholar
  54. Stewart HL, Snell KC (1959) The histopathology of experimental tumors of the liver of the rat. In: Homburger F, Fischman WH (eds) The physiopathology of cancer. Hoeber, New York, pp 85–126Google Scholar
  55. Stewart HL, Williams G, Keysser CH, Lombard LS, Montali RJ (1980) Histologic typing of liver tumors of the rat. JNCI 64:179–206Google Scholar
  56. Svoboda DJ (1964) Fine structure of hepatomas induced in rats with N-dimethylaminoazobenzene. JNCI 33: 315–338PubMedGoogle Scholar
  57. Tatematsu M, Ho RH, Kaku T, Ekem JK, Farber E (1984) Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorene and partial hepatectomy. Am J Pathol 114:418–430PubMedGoogle Scholar
  58. Terao K, Nakano M (1974) Cholangiofibrosis induced by short-term feeding of 3’-methyl-4-(dimethylamino)azo-benzene: an electron microscopic observation. Gann 65: 249–260PubMedGoogle Scholar
  59. Tomatis L, Magee PN, Shubik P (1964) Induction of liver tumors in the Syrian golden hamster by feeding di-methylnitrosamine. JNCI 33: 341–345PubMedGoogle Scholar
  60. Weinbren K (1984) Precancerous states in the liver. In: Carter RL (ed) Precancerous states. Oxford Medical, London, pp 254–277Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Peter Bannasch
  • Ulger Benner
  • Heide Zerban

There are no affiliations available

Personalised recommendations