Skip to main content

Aktive Bauelemente

Active Devices

  • Chapter
Taschenbuch der Hochfrequenztechnik

Zusammenfassung

Aktive Halbleiterbauelemente bestimmen maßgeblich Schalt- und Verstärkerfunktionen im gesamten Bereich der Elektronik von der Leistungselektronik über Höchstfrequenzanwen-dungen bis zu hochkomplexen integrierten Schaltungen. Neben der Möglichkeit, durch Halbleiterbauelemente neuartige, anders nicht zu realisierende Funktionen herzustellen, ist bei integrierten Schaltungen die drastische Reduktion der Kosten für die einzelne elektrische Schalt- und Verstärkerfunktion (Bild 1) der eigentliche Motor für den erstaunlichen Siegeszug der Mikroelektronik mit ihrem ungebrochenen Trend zu verbesserten und komplexeren Schaltungen (Bild 2), dessen Auswirkungen im Bereich von Technik und Gesellschaft noch kaum abzusehen sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Allgemeine Literatur

  • Gerlach, W.: Thyristoren. Berlin: Springer 1981.

    Google Scholar 

  • Gerthsen, C.: Physik, Berlin: Springer 1966 (14. Aufl. 1982: Gerthsen; Kneser; Vogel).

    Google Scholar 

  • Gray, P.R.; Meyer, R.G.: Analysis and design of analog integrated circuits. New York: Wiley 1977.

    Google Scholar 

  • Harth, W.; Ciaassen, M.: Aktive Mikrowellendioden. Berlin: Springer 1981.

    Google Scholar 

  • Kesel, G.; Hammerschmitt, J.; Lange, E.: Signalverarbeitende Dioden. Berlin: Springer 1982.

    Google Scholar 

  • Kittel, C.: Introduction to solid state physics. New York: Wiley 1967.

    Google Scholar 

  • Müller, R.: Grundlagen der Halbleiter-Elektronik, 4. Aufl. Berlin: Springer 1984.

    Google Scholar 

  • Rein, H.-M.; Ranfft, R.: Integrierte Bipolarschaltungen. Berlin: Springer 1980.

    Google Scholar 

  • Schrenk, H.: Bipolare Transistoren. Berlin: Springer 1978.

    Google Scholar 

  • Spenke, E.: Elektronische Halbleiter, 2. Aufl. Berlin: Springer: 1965.

    Google Scholar 

  • Sze, S.M.: Physics of semiconductor devices. New York: Wiley 1981.

    Google Scholar 

  • Tietze, O.; Schenk, Ch.: Halbleiter-Schaltungstechnik, 6. Aufl. Berlin: Springer 1983.

    Google Scholar 

  • Weiß, H.; Horninger, K.: Integrierte MOS-Schaltungen. Berlin: Springer 1982.

    Google Scholar 

Spezielle Literatur

  1. Spenke, E.: Elektronische Halbleiter, 2. Aufl. Berlin: Springer 1965.

    Google Scholar 

  2. Kittel, C.: Introduction to solid state physics. New York: Wiley 1967.

    Google Scholar 

  3. Sze, S.M.: Physics of semiconductor devices. New York: Wiley 1981.

    Google Scholar 

  4. Gerthsen, C.: Physik. Berlin: Springer 1966 (14. Aufl. 1982: Gerthsen; Kneser; Vogel).

    Google Scholar 

  5. Yamaguchi, K.: Mobility model for carriers in the MOS inversion layer. IEEE ED-30 (1983) 658–663.

    Google Scholar 

  6. Dannhäuser, F.: Abhängigkeit der Trägerbeweglichkeit von der Konzentration der freien Ladungsträger. Solid State Electron. 15 (1972) 1371–1375.

    Google Scholar 

  7. Eastman, L.F. et al: Ballistic electron motion in GaAs. Electron. Lett. 16 (1980) 524–525.

    Google Scholar 

  8. Wieder, A.W.: Emitter effects in shallow bipolar devices. IEEE ED-27 (1980) 1402–1408.

    Google Scholar 

  9. Engl, W.; Manch, O.; Wieder, A.: Modeling of bipolar devices in process and device modeling. NATO ASI Ser. E-21. Leyden: Noordhoff 1977.

    Google Scholar 

  10. Crowell, C.; Sze, S.M.: Current transport metal-semiconductor carriers, Solid State Electron. 9 (1966) 1035–1048.

    Google Scholar 

  11. Frenkel, J.: Pre-breakdown phenomena in insulators. Phys. Rev. 54 (1983) 647–648.

    Google Scholar 

  12. Esaki, L.: Discovery of the tunnel diode. IEEE Trans. Ed-23 (1976) 644–647.

    Google Scholar 

  13. Bosch, B.; Engelmann, R.: Gunn-effect-electronics. London: Pitman Publ. 1975.

    Google Scholar 

  14. Van der Ziel, A.; Cenette, C.: Noise in solid state devices, Adv. Electronics, Vol. 46, New York: Academic Press 1978.

    Google Scholar 

  15. Moll, J.: Physics of semiconductors. New York: McGraw-Hill 1964.

    MATH  Google Scholar 

  16. Morkoc, H. et al.: High Mobility in GaAs for high performance MESFETs. Proc. Cornell EE-Conf., Ithaca 1979.

    Google Scholar 

  17. Abe, M.; Memura, T.; Yokoyama, N.; Suyama, K.: Advanced Technology for high speed GaAs VLSI, ESSDERC München 1982. Physik Verlag Weinheim 1983.

    Google Scholar 

  18. Sze, S.M.; Gibbons, G.: Avalanche breakdown of pn-junctions. Appl. Phys. Lett. 8 (1966) 111–113.

    Google Scholar 

  19. Chelikowsky, J.; Cohen, M.: Electronic structure of semiconductors. Phys. Rev. 14 (1976) 556–582.

    Google Scholar 

  20. Dutton: SUPREM, Programm zur Prozeß-Simulation. University Standford.

    Google Scholar 

  21. Ryssel: ICECREM, Programm zur Prozeß-Simulation. TH, München.

    Google Scholar 

  22. Tielert, R.: Numerical Simulation of impurity redistribution near mask edges in process and device simulation for MOS circuits. NATO ASI Ser. E-62. Nijhoff, The Hague, 1983.

    Google Scholar 

  23. Oldham: SAMPLE, Programm zur Prozeß-Simulation. University Berkeley.

    Google Scholar 

  24. Pötzl: MINIMOS, Programm zur MOS-Device Simulation. Univ. Wien.

    Google Scholar 

  25. Dutton: CADDET, Programm zur MOS-Device-Simulation. University Standford.

    Google Scholar 

  26. Engl: GALATEA, Programm zur Device-Simulation. RWTH Aachen.

    Google Scholar 

  27. Engl: MEDUSA, Programm zur-Device-und Netzwerk-Simulation. RWTH Aachen.

    Google Scholar 

  28. Ebers, J.; Moll, J.: Large-signal behavior of junction transistors. Proc. IRE 42 (1954) 1761–1772.

    Google Scholar 

  29. Gummel, H.; Poon, H.: Integral charge control model of bipolar transistors. Bell. Syst. Tech. J. 49 (1970) 827–852.

    Google Scholar 

  30. Müller, R.: Bauelemente der Halbleiterelektronik, S. 35. Berlin: Springer 1973 (2. Aufl. 1979).

    Google Scholar 

  31. Vander Ziel, A.: Noise, sources, characteristics and measurements. Englewood Cliffs: Prentice Hall 1970, p. 100.

    Google Scholar 

  32. Engl, W.; Dirks, H.: Functional device simulation by merging numerical building blocks. Proc. NASECODE II. Dublin: Boole Press 1981.

    Google Scholar 

  33. Shockley, W.: An unipolar “field effect” transistor. Proc. IRE 40 (1952) 1365–1376.

    Google Scholar 

  34. Frohmann-Bentchkowsky, D.; Grove, A.: Conductance of MOS-transistors. IEEE ED-16 (1969) 108–113.

    Google Scholar 

  35. Shichman, H.; Hodges, D.: Modeling and simulation of insulated-gate FET-switching circuits. IEEE J. SC-3 (1968) 285–289.

    Google Scholar 

  36. Goser, K.: Channel formation in an IGFET. IEEE Solid State Circuits Conf. Digest (1970) 98–100.

    Google Scholar 

  37. Einspruch, N.G.: VLSI elektronic, Vol. I, 231–263, Vol.11, 68-108, New York, Academic Press 1981.

    Google Scholar 

  38. Kesel, G.; Hammer Schmitt, J.; Lange, E.: Signalverarbeitende Dioden. Berlin: Springer 1982.

    Google Scholar 

  39. Müller, R.: Grundlagen der Halbleiter-Elektronik. Berlin: Springer 1979 (4. Aufl. 1984).

    Google Scholar 

  40. Harth, W.; Claassen, M.: Aktive Mikrowellendioden. Berlin: Springer 1981.

    Google Scholar 

  41. Gunn, J.B.: Microwave Oszillators of current in III-V semiconductors. Solid State Commun. 1 (1963) 88–91.

    Google Scholar 

  42. Read, W.T.: A proposed high-frequency negative resistance diode. Bell Syst. Tech. J. 37 (1958) 401–446.

    Google Scholar 

  43. Scharfetter, D.L.; Bartelink, D.J.; Johnston, R.L.: Computer simulation of low-frequency high-efficiency oscillation in germanium impatt-diodes. IEEE Trans. ED-15 (1968) 691.

    Google Scholar 

  44. Colemann, D.J.; Sze, S.M.: Alow noise metal — semiconductor-metal-oscillator. Bell Syst. Tech. J. 50 (1971) 1695–1699.

    Google Scholar 

  45. Schrenk, H.: Bipolare Transistoren. Berlin: Springer 1978.

    Google Scholar 

  46. Gri, N.J.: Microwave transistors from small signal to high power. The Microw. J. (1971) 45–62.

    Google Scholar 

  47. Jacobson, D.S.: What are the tradeoffs in rf transistor design? Microwaves 11 (1972) 46–51.

    Google Scholar 

  48. Turner, J.A.: Microwave field effect transistors, solid state duries 1977. London: Inst, of Phys. Conf. Ser. No. 40.

    Google Scholar 

  49. Krausse, J.; Tihany, J.: SIPMOS: Microcomputer und LSI-kompatible Leistungsschalter. Elektronik 29 (1980) 61–64.

    Google Scholar 

  50. Sonderheft über dreidimensionale Halbleiter-Bauelemente: IEEE Trans. ED-25 (1978) 1204–1240.

    Google Scholar 

  51. Gerlach, W.: Thyristoren. Berlin: Springer 1981.

    Google Scholar 

  52. Getreu, I.E.: Modeling the bipolar transistor. Amsterdam: Elsevier 1978.

    Google Scholar 

  53. Gray, P.R.; Senderowicz, D.; Ohara, H.; Warren, B.M.: A single-chip NMOS dual channel filter for PCM. IEEE J. SC-14 (1979) 294–303.

    Google Scholar 

  54. Gray, P.R.; Meyer, R.G.: MOS operational amplifier design — a tutorial overview. IEEE J. SC-17 (1982) 966–982.

    Google Scholar 

  55. McCreary, J.L.: Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J. SC-16 (1981) 608–616.

    Google Scholar 

  56. Martin, K.: Improved circuits for the realization of switched-capacitor filters. IEEE Trans. CAS-27 (1980) 237–244.

    Google Scholar 

  57. Sequin, C.H.; Tompsett, M.F.: Charge transfer devices. New York: Academic Press 1975.

    Google Scholar 

  58. Klar, H.; Mauthe, M.; Pfleiderer, H.-J.; Ulbrich, W.: Passive CCD resonators. Schreiber, R.; Feil, M.; Betzl, H.; Bardl, A.; Traub, K.: Passive CCD resonator filters. IEEE J. SC-16 (1981) 125–135.

    Google Scholar 

  59. Guy, T.S.; Trythall, L.M.: A 16b monolithic bipolar DAC. Digest ISSCC (1982) 88–89.

    Google Scholar 

  60. Luschnig, W.; Petschacher, R.; Navratil, E.: Circuit technique for ultra fast A/D converters. Digest ESSCIRC 1983.

    Google Scholar 

  61. Hamade, A.R.: Asingle chip all-MOS 8 bit A/D converter. IEEE J. SC-13 (1978) 785–791.

    Google Scholar 

  62. McCreary, J.L.; Gray, P.R.: All-MOS charge redistribution analog-to-digital conversion techniques, Part I. IEEE J. SC-10 (1975) 371–379.

    Google Scholar 

  63. Candy, J.C.: Ause of limit cycle oscillations to obtain robust analog-to-digital converters. IEEE Trans. COM-22 (1974) 298–305.

    Google Scholar 

  64. Claasen, T.A.C.M.; Mecklenbräuker, W.F.G.; Peek, J.B.H.; van Hurck, N.: Signal processing method for improving the dynamic range of A/D and D/A converters. IEEE Trans. ASSP-28 (1980) 529–538.

    Google Scholar 

  65. Fotouhi, B.; Hodges, J.A.: High-resolution A/D conversion in MOS/LSI. IEEE J. SC-14 (1979) 920–926.

    Google Scholar 

  66. Blauschild, R.A.: An 8b 50 ns monolithic A/D converter with internal S/H. Digest ISSCC (1983) 178–179.

    Google Scholar 

  67. Seitzer, D.: Elektronische Analog-Digital-Umsetzung. Berlin: Springer 1977, Kap.8.3.

    Google Scholar 

  68. Dingwall, A.G.F.: Monolithic expandable 6 bit 20 MHz CMOS/SOS A/D converter. IEEE J. SC-14 (1979) 926–932.

    Google Scholar 

  69. 75 MHz A/D converter relies on 8 bit chip with 1 urn line widths. Electronics 11 (1981) 37-38.

    Google Scholar 

  70. Palmer, C.R.; Dobkin, R.C.: Acurvature corrected micro-power voltage reference. Digest ISSCC (1981) 58–59.

    Google Scholar 

  71. Meijer, G.C.; Schmale, P.C.; van Zalinge, K.: Anew curvature corrected bandgap reference. IEEE J. SC-17 (1982) 1139–1143.

    Google Scholar 

  72. Song, B.S.; Gray, P.R.: Aprecision curvature-compensated CMOS bandgap reference. Digest ISSCC (1983) 240–241, 312.

    Google Scholar 

  73. Blauschild, R.A.; Tucci, P.A.; Muller, R.S.; Meyer, R.G.: Anew NMOS temperature-stable voltage reference. IEEE J. SC-13 (1978) 161–114.

    Google Scholar 

  74. Rein, H.-M.; Ranft, R.: Integrierte Bipolarschaltungen. Berlin: Springer 1980.

    Google Scholar 

  75. Waldschmidt, K.: schaltungen der Datenverarbeitung. Stuttgart: Teubner 1980.

    Google Scholar 

  76. Zuiderveen, E.A.: Handbuch der digitalen Schaltungen. München: Franzis 1981.

    Google Scholar 

  77. Tetze, U.; Schenk, Ch.: Halbleiter-Schaltungstechnik. 6. Aufl. Berlin: Springer 1983.

    Google Scholar 

  78. Reiß, K.; Liedl, H.; Spichall, W.: Integrierte Digitalbausteine. Berlin: Siemens 1970.

    Google Scholar 

  79. Weiss, H.; Horninger, K.: Integrierte MOS-Schaltungen. Berlin: Springer 1982.

    Google Scholar 

  80. Höfßnger, B.: Großintegration. München: Oldenbourg 1978.

    Google Scholar 

  81. Mead, C.; Conway, L.: Introduction to VLSI systems. Reading: Addison-Wesley 1980.

    Google Scholar 

  82. Carr, W.N.; Mize, J.P.: MOS/LSI: Design and application. New York: McGraw-Hill 1972.

    Google Scholar 

  83. Mano, M.: Digital logic and computer design. Englewood Cliffs: Prentice-Hall 1979.

    MATH  Google Scholar 

  84. Taub, H.; Schilling, D.: Digital integrated electronics. New York: McGraw-Hill 1977.

    Google Scholar 

  85. Mowle, F J.: Asystematic approach to digital logic design. Reading: Addison-Wesley 1976.

    Google Scholar 

  86. Barbe, D.F.: VLSI. Berlin: Springer 1980.

    Google Scholar 

  87. Nuzillat, G. et al.: GaAs MESFET IC’s for Gbit logic applications. IEEE J. SC-17 (1982) 568–584.

    Google Scholar 

  88. DiLorenzo, J.V.; Kandelwall, D.D.: GaAs FET principles and technology. Dedham: Artech House 1982.

    Google Scholar 

  89. Nishiuchi, K. et al.: A subnanosecond HEMT 1 Kbit SRAM. ISSCC Dig. Tech. Papers 27 (1984) 48–49.

    Google Scholar 

  90. Kohonen, T.: Content-addressable memories. Berlin: Springer 1980.

    MATH  Google Scholar 

  91. Glaser, A.B.; Subak-Sharpe, G.E.: Integrated circuit engineering. Reading: Addison-Wesley 1977.

    Google Scholar 

  92. Elmasry, M.I.: Digital MOS integrated circuits. New York: Wiley 1980.

    Google Scholar 

  93. Barbe, D.F.: Charge-coupled devices. Berlin: Springer 1980.

    Google Scholar 

  94. Capece, R.P.: Schnelle statische RAM-Bausteine. Elektronik. 20 (1979) 39–50.

    Google Scholar 

  95. Adam, M.; Smith, S.: Update on EPROMs. Comput. Des. 18 (1979) 162–168.

    Google Scholar 

  96. Ross, E.C.; Wallmark, J.T.: Theory of the switching behaviour of MIS memory transistors. RCA Rev. 30 (1969) 366–384.

    Google Scholar 

  97. Rößler, B.; Müller, R.G.: Erasable and electrically reprogrammable read-only memory using the n-channel SIMOS one-transistor cell. Siemens Forsch, u. Entwickl.-Ber. 4 (1975) 345–351.

    Google Scholar 

  98. Hilburn, J.L.; Julich, P.M.: Microcomputers/microprocessors. Englewood Cliffs: Prentice-Hall 1976.

    Google Scholar 

  99. Greenfield, S.E.: The architecture of microcomputers. Cambridge: Winthrop Publ. 1980.

    Google Scholar 

  100. Gupta, A.; Toong, H.: Advanced microprocessors. New York: Wiley 1983.

    Google Scholar 

  101. Mano, M.M.: Computer system architecture. Englewood Cliffs: Prentice-Hall 1976.

    MATH  Google Scholar 

  102. Lewin, D.: Theory and design of digital computer systems. Walton-on-Thames: Nelson 1981.

    Google Scholar 

  103. Advanced Micro Devices (AMD): Firmenschrift „Build an Am2900 Microcomputer“, 1978.

    Google Scholar 

  104. Fleisher, H.; Maissei, L.I.: An introduction to array logic. IBM J. Res. Dev. 19 (1975) 98–109.

    Google Scholar 

  105. Horninger, K.: Ahigh-speed ESFI SOS programmable logic array with an MNOS version. IEEE J. SC-10 (1975) 331–336.

    Google Scholar 

  106. Schmookler, M.S.: Design of large ALUs using multiple PLA macros. IBM J. Res. Dev. 24 (1980) 2–14.

    Google Scholar 

  107. Schwärtzel, H.G.: CAD für VLSI. Berlin: Springer 1982.

    Google Scholar 

  108. Calahan, D.: Rechnerunterstützter Schaltungsentwurf. München: Oldenbourg 1973.

    Google Scholar 

  109. Herskowitz, G.J.: Computer-aided integrated circuit design. New York: McGraw-Hill 1968.

    Google Scholar 

  110. Bräk-kelmann, W. et al.: A masterslice LSI for subnanosecond random logic. ISSCC Dig. Tech. Papers (1977) 108–109.

    Google Scholar 

  111. Burkard, W.D.: Semi-custom LSI at storage technology corporation. VLSI Design, 3rd Quarter 1981, 14–18.

    Google Scholar 

  112. Beresford, R.: Comparing gate array and standard-cell ICs. VLSI Design, Dec. 1983, 30–36.

    Google Scholar 

  113. Werner, J.: The silicon compiler: Panacea, Wishful Thinking or Old Hat? VLSI Design, Sept/Oct. 1982, 46–52.

    Google Scholar 

  114. Rondell, B.; Treleaven, D.C.: VLSI architecture. Englewood Cliffs: Prentice Hall 1983.

    Google Scholar 

  115. NN: Survey of silicon foundries. VLSI Design, July/August 1982, 42–48.

    Google Scholar 

  116. Bouricius, W.G. et al.: Algorithms for detection of faults in logic circuits. IEEE Trans. C-20 (Nov. 1971).

    Google Scholar 

  117. Stewart, J.H.: Application of scan/set for error detection and diagnosis. Proc. Sem. Test Conf. 1978.

    Google Scholar 

  118. Breuer, M.A.; Friedman, A.D.: Diagnosis and reliable design of digital systems. Woodland Hills: Pitman 1976.

    Google Scholar 

  119. Williams, M.J.Y.; Angell, J.B.: Enhancing testability of large-scale integrated circuits via test points and additional logic. IEEE Trans. C-22 (Jan. 1973).

    Google Scholar 

  120. Eichelberger, E.B.; Williams, T.W.: Alogic structure for LSI testability. Proc. 14th Design Autom. Conf. (1977) 462–468.

    Google Scholar 

  121. Williams, T.; Parker, K.: Design for testability — a survey. Proc. IEEE 71 (1983) 98–112.

    Google Scholar 

  122. Koenemann, B. et al.: Signaturregister für selbsttestende ICs. NTG Fachber., Bd. 68. NTG-Fachtagung: Höchstintegrierte Schaltungen, 1979.

    Google Scholar 

Allgemeine Literatur

  • Casey, Jr., B.C., Panish, M.B: Het-erostructure lasers, Part A: Fundamental principles. New York: Academic Press 1978.

    Google Scholar 

  • Casey, Jr., H.C., Panish, M.B.: Heterostructure lasers, Part B: Materials and operating characteristics. New York: Academic Press 1978.

    Google Scholar 

  • Kressel, H.; Butler, I.K.: Semiconductor lasers and het-erojunction LEDs. New York: Academic Press 1977.

    Google Scholar 

  • Melchior, H.: Demodulation and photodection techniques. In: Arrechi; Schulz-Dubois (Ed.): Laser handbook Vol. II. Amsterdam: North-Holland 1972, pp. 725–835.

    Google Scholar 

  • Schlachetzki, A.; Müller, J.: Photodiodes for optical communication. Frequenz 33 (1979) 283–290.

    Google Scholar 

  • Stillman, G.E.; Cook, L.W.; Bulman, G.E.; Tatabaie, N.; Chim, R.; Dapkus, P.D.: Long wavelength (1.3 to 1.6 jam) detectors for fibre optical communications. IEEE Trans. ED-29 (1982) 1355–1371.

    Google Scholar 

  • Thompson, G.H.B.: Physics of semiconductor laser devices. Chichester: Wiley 1980.

    Google Scholar 

Spezielle Literatur

  1. Bar-Chaim, N.; Margalit, S.; Yariv, A.; Ury, I.: Gallium arsenide integrated optoelectronics. IEEE Trans. Electron Devices ED-29 (1982) 1372–1381.

    Google Scholar 

  2. Mollwo, E.; Kaule, W.; Maser and laser. Mannheim: Bibliogr. Inst. 1966.

    Google Scholar 

  3. Sugimura, A.: Band-to-band Auger effect in long wavelength multinary III-V alloy semiconductor lasers. IEEE J. QE-18 (1982) 352–363.

    Google Scholar 

  4. Beneking, H.: Material engineering in optoelectronics. Festkörperprobleme XVI (1976) 195–216.

    Google Scholar 

  5. Casey, Jr., H.C.; Panish, M.B.: Heterostructure lasers, Part B: Materials and operating characteristics. New York: Academic Press 1978.

    Google Scholar 

  6. Thompson, G.H.B.; Henshall, G.D.: Non-radiative carrier loss and temperature sensitivity of threshold in 1.27 urn (Galn) (AsP)/InP DH lasers. Electron. Lett. 16 (1980) 42–44.

    Google Scholar 

  7. Goodfellow, R.C.; Carter, A.C.; Rees, G.J.; Davis, R.: Radiance saturation in small-area GAInAsP/InP and GaAlAs/GaAs LED’s. IEEE Trans. Ed-28 (1981) 365–371.

    Google Scholar 

  8. Galginaitis, S.V.: Improving the external efficiency of electroluminescent diodes. J. Appl. Phys. 36 (1965) 460–461.

    Google Scholar 

  9. Burrus, C.A.: Radiance of small-area high current-density electroluminescent diodes. Proc. IEEE 60 (1972) 231 232.

    Google Scholar 

  10. Wada, O.; Yamakoshi, S.; Abe, M.; Akita, K.; Toyama, Y.: Anew type InGaAsP/InP DH LED for fiber optical communication system at 1.2 to 1.3 μrn. Proc. Optical Communication Conf. (Amsterdam) Paper 4.6 (1979).

    Google Scholar 

  11. Kressel, H.; Butler, J.K.: Semiconductor lasers and heterojunction LEDs. New York: Academic Press 1977, Chap. 14.

    Google Scholar 

  12. Grau, G.: Optische Nachrichtentechnik. Berlin: Springer 1981.

    Google Scholar 

  13. Lee, T.P.; Dentai, A.G.: Power and modulation bandwidth of GaAs-GaAlAs high radiance LEDs for optical communication systems. IEEE J. QE-14 (1978) 150–159.

    Google Scholar 

  14. Grothe, H., Proebster, W.: Influence of Mg doping on cutoff frequency and light output of InGaAsAsP/InP heterojunction LEDs. IEEE Trans. ED-18 (1981) 371–373.

    Google Scholar 

  15. Heinen, J.; Albreeht, H.; Weyrieh, C.: Determination of the recombination coefficients in undoped (In,Ga) (As,P) from transient optical output analysis of (In,Ga) (As,P)-InP double heterostructure LEDs. J. Appl. Phys. 53 (1982) 1800–1803.

    Google Scholar 

  16. Kamata, N.; Kamiya, T.; Yanai, II.: Accurate determination of temperature rise in Burrus-type LEDs by using resonant reflection spectra. IEEE Trans. ED-28 (1981) 379 384.

    Google Scholar 

  17. Hasegawa, O.; Yagawa, N.: Low-frequency response to AlGaAs double heterojunction LEDs. IEEE Trans. ED-28 (1981) 385–389.

    Google Scholar 

  18. Yariv, A.: Introduction to optical electronics. New York: Holt, Rinehart and Winston 1976, Chap. 4.

    Google Scholar 

  19. Stern, F.: Calculated spectral dependence of gain in excited GaAs. J. Appl. Phys. 47 (1976) 5382 5386.

    Google Scholar 

  20. Kroemer, H.: A proposed class of heterojunction injection lasers. Proc. IEEE (Correspond.) 51 (1963) 1782–1783.

    Google Scholar 

  21. Tsang, W.T.: Extremely low threshold(AlGa)As modified multi-quantum well heterostructure lasers grown by molecular beam epitaxy. Appl. Phys. Lett. 39 (1981) 786–788.

    Google Scholar 

  22. Casey, Jr., H.C.; Panish, M.B.: Heterostructure lasers, Part A: Fundamental principles. New York: Academic Press 1978.

    Google Scholar 

  23. Aiki, K; Nakamura, M.; Kuroda, T.; Umeda, J.: Channeled-substrate planar structure (AlGa)As injection lasers. Appl. Phys. Lett. 30 (1977) 649–651.

    Google Scholar 

  24. Sugino, T.; Wada, M.; Shimizu, H.; Itoh, K.; Teramoto, I.: Terraced substrate GaAs-(GaAl)As injection lasers. Appl. Phys. Lett. 34 (1979) 270–272.

    Google Scholar 

  25. Amann, M.-C.: New stripe-geometry laser with simplified fabrication process. Electron. Lett. 15 (1979) 441–442.

    Google Scholar 

  26. Wolf, H.D.; Mettler, K.; Zschauer, K.-H.: High performance 880 nm (GaAl)As/GaAs oxide stripe lasers with very low degradation rates at temperatures up to 120 °C. Jap. J. Appl. Phys. 9 (1981) L693–L696.

    Google Scholar 

  27. Marschall, P.; Schlosser, E.; Wölk, C.: New diffusion type stripe-geometry injection laser. Electron. Lett. 15 (1979) 38–39.

    Google Scholar 

  28. Dixon, R.W.; Nash, F.R.; Hartmann, R.L.; Hepplewhite, R.T.: Improved light-output linearity in stripe-geometry double-heterostructure (Al,Ga)As lasers. Appl. Phys. Lett. 29 (1976) 372–374.

    Google Scholar 

  29. Elsässer, W.; Göbel, O.; Kuhl, J.: Coherence properties of gain-and index-guided semiconductor lasers. IEEE J. QE-19 (1983) 981–985.

    Google Scholar 

  30. Zachos, T.H.: Gaussian beams from GaAs junction lasers. Appl. Phys. Lett. 12 (1968) 318–320.

    Google Scholar 

  31. Arnold, G.; Russer, P.; Petermann, K.: Modulation of laser diodes. In: Kressel, H.(Ed.): Topics in Appl. Phys., Vol. 39. Berlin: Springer 1982, pp. 213–242.

    Google Scholar 

  32. Matsuoka, T.; Nagai, H.; Itaya, Y.; Noguchi, Y.; Suzuki, Y.; Ikegami, T.: CW operation of DFB-BH GalnAsP/InP lasers in 1.5 μrn wavelength region. Electron. Lett. 18 (1982) 27–28.

    Google Scholar 

  33. Tsang, W.-T.; Wang, S.: GaAs-Ga1-xA1xAs double-heterostructure injection lasers with distributed Bragg reflectors. Appl. Phys. Lett. 28 (1976) 596–598.

    Google Scholar 

  34. Ettenberg, M.; Nuese, C.J.; Kressel, H.: The temperature dependence of threshold for double heterojunction lasers. J. Appl. Phys. 50 (1979) 2949–2950.

    Google Scholar 

  35. Einhorn, A.J.; Barry, J.D.: Review of reliability improvements of GaAs-As laser diodes. Microelectron. Reliab. 22 (1982) 769–780.

    Google Scholar 

  36. Krumpholz, O.; Maslowski, S.: Theorie des Verhaltens von Photodioden gegenüber kurzen Lichtimpulsen. Telefunken-Ztg. 39 (1966) 373–380.

    Google Scholar 

  37. Trommer, R.; Kunkel, W.: In0.53Ga0.47As/InP pin and avalanche photodiodes for the 1 to 1.6 μm wavelength range. Siemens Forsch.-u. Entwickl.-Ber. 11 (1982) 216–220.

    Google Scholar 

  38. Forrest, S.R.; Williams, G.F.; Kim, O.K.; Smith, R.G.: Excess-noise and receiver sensitivity measurements of In0.53Ga0.47As/InP avalanche photodiodes. Electron. Lett. 17 (1981) 917–919.

    Google Scholar 

Allgemeine Literatur

  • Arecchi, F.T.; Schulz-Dubois, E.O.: Laser handbook I. Amsterdam: North-Holland 1972.

    Google Scholar 

  • Barone, A.; Paterno, G.: Physics and applications of the Josephson effect. New York: Wiley 1982.

    Google Scholar 

  • Bergmann, L.; Schäfer, C.: Lehrbuch der Experimentalphysik, Bd. III: Optik, 7. Aufl., Berlin: de Gruyter 1978.

    Google Scholar 

  • Brunner, W.; Junge, K.: Lasertechnik. Leipzig: Hüthig 1982.

    Google Scholar 

  • Grau, G.: Quantenelektronik. Braunschweig: Vieweg 1978.

    Google Scholar 

  • Loudon, R.: The quantum theory of light. Oxford: Clarendon Press 1973.

    Google Scholar 

  • Paul, H.: Nichtlineare Optik, Bd. I u. II. Berlin: Akademie Verlag 1973.

    Google Scholar 

  • Pressley, R.J.: Handbook of lasers with selected data on optical technology. Cleveland: Chemical Rubber 1971.

    Google Scholar 

  • Siegman, A.E.: An introduction to lasers and masers. New York: McGraw-Hill 1971.

    Google Scholar 

  • Solymar, L.: Superconducting tunneling and applications. London: Chapman & Hall 1972.

    Google Scholar 

  • Weber, H.; Herziger, G.: Laser. Weinheim: Physik-Verlag 1978.

    Google Scholar 

Spcziclle Literatur

  1. Bergmann, L.; Schäfer, C.: Lehrbuch der Experimentalphysik, Bd. III; Optik, 7. Aufl., Berlin: de Gruyter 1978.

    Google Scholar 

  2. Loudon, R.: The quantum theory of light. Oxford: Clarendon Press 1973.

    Google Scholar 

  3. Grau, G.: Quantenelektronik. Braunschweig: Vieweg 1978.

    Google Scholar 

  4. Grau, G.: Temperatur-und Laserstrahlung als Informationsträger. AEÜ 18 (1964) 1–4.

    Google Scholar 

  5. Siegman, A.E.: An introduction to lasers and masers. New York: McGraw-Hill 1971.

    Google Scholar 

  6. Brunner, W.; Junge, K.: Lasertechnik. Leipzig: Hüthig 1982.

    Google Scholar 

  7. Arecchi, F.T.; Schulz-Dubois, E.O.: Laser handbook I. Amsterdam: North-Holland 1972.

    Google Scholar 

  8. Pressley, R.J.: Handbook of lasers with selected data on optical technology. Cleveland: Chemical Rubber 1971.

    Google Scholar 

  9. Siegman, A.E.: Microwave solid-state masers. New York: McGraw-Hill 1964.

    Google Scholar 

  10. Troup, G.: Molekularverstärker. München: Oldenbourg 1967.

    Google Scholar 

  11. Kollberg, E.L.; Lewin, P.T.: Traveling wave masers for radio astronomy in the frequency range 20 to 40 GHz. IEEE Trans. MTT-24 (1976) 718 725.

    Google Scholar 

  12. Yngvesson, K.S.; Cheung, A.C.; Chui, M.F.; Cardiasmenos, A.G.; Wang, S.Y.; Townes, C.H.: Kband traveling-wave laser using ruby. IEEE Trans. MTT-24 (1976) 711–717.

    Google Scholar 

  13. Paul, H.: Nichtlineare Optik, Bd. I u. II. Berlin: Akademie Verlag 1973.

    Google Scholar 

  14. Stolen, R.H.: Nonlinear properties of optical fibres. In: Miller, S.E.; Chynoweth, A.G.(Eds.): Optical fiber telecommunications. New York: Academic Press 1977.

    Google Scholar 

  15. Solymar, L.: Superconducting tunneling and applications. London: Chapman & Hall 1972.

    Google Scholar 

  16. Duke, C.B.: Tunneling in solids. New York: Academic Press 1969.

    Google Scholar 

  17. Tucker, J.R.: Quantum limited detection in tunnel junction mixers. IEEE J. QE-15 (1979) 1234–1258.

    Google Scholar 

  18. van der Ziel, A.: Noise in SIS microwave mixers. IEEE J. QE-19 (1983) 799.

    Google Scholar 

  19. Barone, A.; Paterno, G.: Physics and applications of the Josephson effect. New York: Wiley 1982.

    Google Scholar 

  20. Russer, P.: Die Anwendung von Josephson-Elementen in Mikrowellenempfängern. NTZ 31 (1978) 604–612.

    Google Scholar 

  21. Ambegaokar, V.; Baratoff, A.: Tunneling between superconductors. Phys. Res. Lett. 10 (1963) 486–489, errat. Phys. Rev. Lett. 11 (1963) 104.

    Google Scholar 

  22. Russer, P.: General energy relations for Josephson junctions. Proc. IEEE 59 (1971) 282–283.

    Google Scholar 

  23. Russer, P.: Influence of microwave radiation on current-voltage characteristic of superconducting weaklings. J. Appl. Phys. 43 (1972) 2008–2010.

    Google Scholar 

  24. Harris, E.P.; Laibowitz, R.B.: Properties of superconducting weak links prepared by ion implantation and by electron beam lithography. IEEE Trans. MAG-13 (1977) 724–730.

    Google Scholar 

  25. Rogovin, D.; Scalapino, D.J.: Fluctuation phenomena in tunnel junctions. Ann. Phys. 86 (1974) 1–90.

    Google Scholar 

Allgemeine Literatur

  • Chodorow, M.: Microwave tubes. AD-A 088 745 (Stanford University) 1980.

    Google Scholar 

  • Espe, W.: Werkstoffkunde der Hochvakuumtechnik. Bd. 1-3. Berlin: Deutscher Verlag d. Wissenschaften 1959-1961.

    Google Scholar 

  • Kleen, W.: Einführung in die Mikrowellen-Elektronik, Teil I: Grundlagen. Stuttgart: Hirzel 1952.

    Google Scholar 

  • Kleen, W.; Pöschl, K: Einführung in die Mikrowellen-Elektronik, Teil II: Lauffeldröhren. Stuttgart: Hirzel 1958.

    Google Scholar 

  • Kohl, W.E.: Handbook of materials and techniques for vacuum devices. New York: Reinhold 1967.

    Google Scholar 

  • Kowalenko, W.F.: Mikrowellenröhren. Berlin: Verlag Technik 1957.

    Google Scholar 

  • Okress, E. et al.: Crossed field microwave devices, Vol. I and II. New York: Academic Press 1961.

    Google Scholar 

  • Pierce, J.R.: Traveling wave tubes. New York: Van Nostrand 1950.

    Google Scholar 

  • Rothe, H.; Kleen, W.: Hochvakuum-Elektronenröhren, Bd. I: Physikalische Grundlagen Frankfurt: Akad. Verlagsges. 1955.

    Google Scholar 

  • Spangenberg, K: Vacuum tubes. New York: McGraw-Hill 1948.

    Google Scholar 

Spezielle Literatur

  1. Dyke, W.P.; Dolen, W.W.: Field emission. Adv. Electron. Electron Phys. 8 (1956) 90–185.

    Google Scholar 

  2. Bruining, H.: Physics and applications of secondary electron emission. London: Pergamon Press 1954.

    MATH  Google Scholar 

  3. Zwicker, H.R.: Photoemissive detectors. In: Topics in applied physics, 1977. Keyes, R.J. (Ed.): Optical and infrared detectors, 149–196.

    Google Scholar 

  4. Cronin, J.L.: Modern dispenser cathodes. Proc. IEE 128, Part I (1981) 19–32.

    MathSciNet  Google Scholar 

  5. Shroff, A.M.; Palluel, P.: Les cathodes imprégnées. Rev. Tech. Thomson-CSF No. 3 (1982).

    Google Scholar 

  6. Rothe, H.; Kleen, W.: Hochvakuum-Elektronenröhren, Bd. I: Physikalische Grundlagen. Frankfurt/M: Akad. Verlagsges. 1955, 147–185.

    Google Scholar 

  7. Scholze, H.: Glas: Natur, Struktur und Eigenschaften. Braunschweig: Vieweg 1965 (2. Aufl. Berlin: Springer 1977).

    Google Scholar 

  8. Zincke, A.: Technologie der Glas-Verschmelzungen. Leipzig: Akad. Verlagsges. 1961.

    Google Scholar 

  9. Reutenbach, R.; Zincke, A.: Die Glasverschmelzung als Bauelement der Vakuumtechnik. Feinwerktechnik 62 (1958) 194–213.

    Google Scholar 

  10. Roth, A.: Vacuum sealing techniques. Oxford: Pergamon Press 1966.

    Google Scholar 

  11. te Gude, H.: Fortschritte in der Elektronenröhrentechnik durch Keramik-Metallbauweise NTZ 15 (1962) 553–564.

    Google Scholar 

  12. Beck, A.H.(Ed.): Handbook of vacuum physics, Vol. 3, Part 1: Kohl, W.H.: Ceramics and ceramic to metals sealing. Part 2: Kohl, W.U.: Soldering and brazing.

    Google Scholar 

  13. Roth, A.: Vacuum technology. Amsterdam: North-Holland 1976.

    Google Scholar 

  14. Gerlach, P.: Neue Fortschritte bei Leistungsröhren für Großleistungssender. Rundfunk-Tech. Mitt. 4 (1977) 158 161.

    Google Scholar 

  15. Bachmann, R.; Kuse, D.u.a.: Elektronenröhren. Schweiz. Tech. Z. 77 (1980) 952–953.

    Google Scholar 

  16. DIN-IEC 235 Teil 1: Messung der elektrischen Eigenschaften von Mikrowellenröhren. Teil 1: Begriffe (1978).

    Google Scholar 

  17. Chodorow, M.: Microwave tubes. AD A 088 745 (Stanford University) 1980.

    Google Scholar 

  18. Schmidt, W.: Hochleistungsklystrons für Fernsehsender im Frequenzbereich IV/V. Valvo-Ber. VIII (1962) 119–150.

    Google Scholar 

  19. Pierce, J.R.: Traveling wave tubes. New York: Van Nostrand 1950.

    Google Scholar 

  20. Rowe, J.E.: Nonlinear electron-wave interaction phenomena. New York: Academic Press 1955.

    Google Scholar 

  21. Kleen, W.: Einführung in die Mikrowellen-Elektronik, Teil I: Grundlagen. Stuttgart: Hirzel 1952.

    Google Scholar 

  22. Okress, E. et al.: Crossed field microwave devices, Vol. I and II. New York: Academic Press 1961.

    Google Scholar 

  23. Schmitt, H.: Koaxialmagnetrons. Tech. Mitt. AEG-Telefunken 64 (1974) 222–226.

    Google Scholar 

  24. Hirshfield, J.L.: Gyrotrons. In: Button, K.J.(Ed.): Infrared and millimeter waves, Vol. 1: Sources of radiation. New York: Academic Press 1979, 1–54.

    Google Scholar 

  25. Symons, R.S.; Jory, H.R.: Cyclotron resonance devices. Adv. Electron. Electron Phys. 55 (1981) 175.

    Google Scholar 

  26. Granatstein, V.L.; Read, M.E.; Barnett, L.R.: Measured performance of gyrotron oscillators and amplifiers. In: Button, K.J.(Ed.): Infrared and millimeter waves, Vol. 5, Part 1. New York: Academic Press 1982, 267–304.

    Google Scholar 

  27. Andronov, A.A. et al.: The gyrotron. Infrared Phys. 18 (1978) 385–393.

    Google Scholar 

  28. Sprangle, P.; Vomvoridis, J.L.; Manheimer, W.M.: A classical electron cyclotron quasioptical maser. Appl. Phys. Lett. 38 (1981) 310–313.

    Google Scholar 

  29. Gyrotron Sonderhefte 1, 2 u. 3, Int. J. Electron. 51 (1981) 275 606; 53 (1982) 501 754; 57 (1984) 786-1246.

    Google Scholar 

  30. Döring, H.: Erzeugung höchster Mikrowellenleistungen: Das Gyrotron. Phys. Unserer Zeit 12 (1981) 172–177.

    Google Scholar 

  31. Döring, H.: Stand der Gyrotronentwicklung. NTG-Fachber. 85 (1983) 112 117.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin/Heidelberg

About this chapter

Cite this chapter

Bretting, J. et al. (1986). Aktive Bauelemente. In: Lange, K., Löcherer, KH. (eds) Taschenbuch der Hochfrequenztechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96894-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96894-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96895-2

  • Online ISBN: 978-3-642-96894-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics