Skip to main content

Part of the book series: Reactivity and Structure Concepts in Organic Chemistry ((REACTIVITY,volume 21))

Abstract

L-Isoleucine (13.1 g, 100 mmol) is suspended (and partially dissolved) in distilled water (50 ml) and completely dissolved by the addition of N NaOH (100 ml). p-Toluenesulfonyl chloride (26.7 g, 140 mmol) is added to the vigorously stirred solution followed by N NaOH in small portions to maintain the alkalinity of the mixture at about pH 9. Some heat is evolved during the reaction and external cooling with cold water or ice-water is necessary to keep the temperature of the reaction mixture at about 20 °C. After no more alkali is used up [3] stirring is continued at room temperature one hour longer. Any unreacted acid chloride is removed by filtration and the solution acidified with 5 N HCl (about 20 ml) to Congo. The mixture is stored in the cold overnight; the crystals are collected on a filter, washed with water, dried in air and finally in vacuo over P2O5. The product, 25 g (88%) melts at 135–136 °C; [α] 21D -12° (c 2, 0.5 N KHCO3) [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischer, E., Livschitz, W.: Ber. dtsch. Chem. Ges. 48, 360 (1915)

    Article  CAS  Google Scholar 

  2. Katsoyannis, P. G., du Vigneaud, V.: J. Amer. Chem. Soc. 76, 3113 (1954)

    Article  CAS  Google Scholar 

  3. For the m.p. of several other tosylamino acids cf. McChesney, E. W., Swan, W. K., Jr.: J. Amer. Chem. Soc. 59, 1116 (1937)

    Article  CAS  Google Scholar 

  4. Nefkens, H. G. L., Tesser, G. I., Nivard, R. J. F.: Recueil 79, 688 (1960). The preparation of several additional phthalylamino acids is described. Phthalyl-L-tryptophan could not be obtained by this method.

    Article  Google Scholar 

  5. Phthalyl amino acids obtained by the fusion of phthalic anhydride with amino acids (Billman, J. H., Harting, W. F.: J. Amer. Chem. Soc. 70, 1473 (1948)) are not suitable for peptide synthesis because their chiral purity is lost in the process. Several alternative methods have been proposed for phthalylation of amino acids but none of these can compete in simplicity with the procedure of Nefkens et al. (ref. 1).

    Article  CAS  Google Scholar 

  6. The reagent is commercially available. If necessary, it can be prepared from phthalimide (147 g, 1 mol) which is dissolved in dimethylformamide (½ liter) by the addition of triethylamine (101 g = 140 ml, 1 mol). The solution is cooled in an ice-water bath while slowly ethyl chlorocarbonate (113.5 g = 100 ml, 1.05 mol) is added with stirring. About an hour is required for the addition of the chlorocarbonate. Stirring is continued for about another hour while the mixture is allowed to warm up to room temperature. The solution is poured into water (3 liters) with vigorous stirring. The product is collected on a filter, thoroughly washed with water, dried in air and finally in vacuo over phosphorus pentoxide. The crude reagent (190 g, 86%) is purified by recrystallization from hot ethanol to reach the m.p. 80 °C. Two recrystallizations might be necessary (In the literature an m.p. of 87–89 °C is also reported: Heller, G., Jacobsohn, P.: Ber. dtsch. Chem. Ges. 54, 1107(1921).)

    Article  Google Scholar 

  7. Bergmann, M., Zervas, L., Ber. dtsch. Chem. Ges. 65, 1192 (1932)

    Article  Google Scholar 

  8. The preparation of Z-Pro has been described by several authors, cf. e.g. Berger, A., Kurtz, J., Katchalski, E.: J. Am. Chem. Soc. 76, 5552 (1954)

    Article  CAS  Google Scholar 

  9. Benzyl chlorocarbonate is commercially available, often under the name benzyl chloroformate or carbobenzoxy chloride. It can deteriorate on storage, probably due to disproportionation to dibenzyl carbonate and phosgene. It is advisable, therefore, to bubble nitrogen through the sample to be used, in a hood, for several hours. The benzyl chlorocarbonate content of the material can be determined in a small scale experiment, e.g. by the acylation of excess glycine. For the introduction of the benzyloxycarbonyl group into unusual amino acids or into valuable peptides, freshly prepared benzyl chlorocarbonate may be preferable to commercial materials. For its preparation cf. Farthing, A. C., J. Chem. Soc. 1950, 3213 or Organic Syntheses Vol. 23, p. 13. Benzyl chlorocarbonate can be distilled but only at moderate temperature in high vacuum.

    Google Scholar 

  10. Boissonnas, R. A., Guttmann, S., Huguenin, R. L., Jaquenoud, P. A., Sandrin, E.: Helv. Chim. Acta 41, 1867 (1958)

    Article  CAS  Google Scholar 

  11. Originally (Bergmann, M., Zervas, L.: Ber. dtsch. Chem. Ges. 65, 1192 (1932)) a m.p. of 175° was reported.

    Article  Google Scholar 

  12. Benoiton, L.: Can. J. Chem. 40, 570 (1962);

    Article  CAS  Google Scholar 

  13. cf. also Berger, A., Katchalski, E.: J. Amer. Chem. Soc. 73, 4084 (1951)

    Article  CAS  Google Scholar 

  14. Sakakibara, S., Honda, I., Naruse, M., Kanaoka, M.: Experientia 25, 576 (1969)

    Article  CAS  Google Scholar 

  15. Several alternative methods have been proposed for the preparation of 4-methoxy-benzyloxycarbonylamino acids, for instance: a) Weygand, F., Hunger, K.: Chem. Ber. 95, 1 (1962); b) Jones, J. H., Young, G. T.: Chem. Ind. 1966, 1722;

    Article  CAS  Google Scholar 

  16. Klieger, E.: Justus Liebigs Ann. Chem. 724, 204 (1969);

    Article  CAS  Google Scholar 

  17. Sofuku, S., Mizumura, M., Hagitani, A.: Bull. Chem. Soc. Japan 43, 177 (1970);

    Article  CAS  Google Scholar 

  18. Yajima, H., Tamura, F., Kiso, Y., Kurobe, M.: Chem. Pharm. Bull. 21, 1380 (1973). The procedure of Sakakibara et al. (ref. 1) was selected for this volume because of its simplicity.

    Article  CAS  Google Scholar 

  19. Itoh, M., Hagiwara, D., Kamiya, T.: Tetrahedron Letters 1975, 4393

    Google Scholar 

  20. Itoh, M., Hagiwara, D, Kamiya, T.: Bull. Chem. Soc. Japan 50, 718 (1977)

    Article  CAS  Google Scholar 

  21. Tarbeil, D. S., Yamamoto, Y., Pope, B. M.: Proc. Nat. Acad. Sci. USA 69, 730 (1972)

    Article  Google Scholar 

  22. Moroder, L., Hallett, S., Wünsch, E., Keller, O., Wersin, G.: Hoppe Seyler’s Z. Physiol. Chem. 357, 1651 (1976)

    Article  CAS  Google Scholar 

  23. The application of tert.butyl pyrocarbonate for the introduction of the Boc group could be further improved by the use of a pH-stat (Perseo, G., Piani, S., de Castiglione, R.: Int. J. Peptide Protein Res. 21, 227 (1983)). This, in turn, is an adaptation of the method of Schnabel (Justus Liebigs Ann. Chem. 702, 108 (1967)) in which the reaction between the tert.butyl azidoformate and the amino acid was similarly monitored. The single drawback of these methods is that the optimal pH has to be determined for each amino acid. It should be noted that tert.butyl azidoformate exploded in several laboratories and is no more commercially available. It can be prepared, however, from tert.butyl carbazate and be used without isolation.

    Article  CAS  Google Scholar 

  24. Sieber, P., Iselin, B.: Helv. Chim. Acta 51, 622 (1968)

    Article  CAS  Google Scholar 

  25. Mowry, D. T., Dazzi, J., Renoll, M., Shortridge, R. W.: J. Amer. Chem. Soc. 70, 1916(1948)

    Article  CAS  Google Scholar 

  26. Schnabel, E., Schmidt, G., Klauke, E.: J. Liebigs Ann. Chem. 743, 69 (1971)

    Article  CAS  Google Scholar 

  27. This mixed carbonate is more reactive than the phenyl derivative described in ref. 1 and on p. 21. It is also less sensitive to water and less ready to suffer thermal decomposition (cf. Sieber, P., Iselin, B.: Helv. Chem] Acta 52, 1525 (1969)). 4-Methoxycarbonylphenyl-2-(4-biphenyl)-2-propyl carbonate can be stored at room temperature at least for two months.

    Article  CAS  Google Scholar 

  28. Carpino, L. A., Han, G. Y.: J. Org. Chem. 37, 3404 (1972)

    Article  CAS  Google Scholar 

  29. Brown, W. G., Bluestein, B. A.: J. Amer. Chem. Soc. 65, 1082 (1953)

    Article  Google Scholar 

  30. Zervas, L., Borovas, D., Gazis, E.: J. Amer. Chem. Soc. 85, 3660 (1963)

    Article  CAS  Google Scholar 

  31. Carpino, L. A., Tsao, J. H., Ringsdorf, H., Fell, E., Hettrich, G.: J. Chem. Soc. Chem. Commun. 1978, 358

    Google Scholar 

  32. Wünsch, E., Moroder, L., Keller, O.: Hoppe Seyler’s Z. Physiol. Chem. 362, 1289(1981)

    Article  Google Scholar 

  33. Keller, O., Rudinger, J.: Helv. Chim. Acta 58, 531 (1975)

    Article  CAS  Google Scholar 

  34. Rachele, J. R.: J. Org. Chem. 28, 3898 (1963)

    Article  Google Scholar 

  35. The classical method of esterification of amino acids with methanol or ethanol (Curtius, T.: Ber. dtsch. Chem. Ges. 16, 753 (1883);

    Article  Google Scholar 

  36. Fischer, E.: Ber. dtsch. Chem. Ges. 34, 433 (1901)) requires dry HCl gas.

    Article  CAS  Google Scholar 

  37. Esterification with the aid of thionyl chloride (Brenner, M., Huber, W.: Helv. Chim. Acta 36, 1109 (1953)) yields products which must be purified, e.g., by distillation of the amino acid ersters. Such considerations led to the selection of the simple procedure of Rachele (ref. 1) for this volume. Esterification of amino acids with methanol in the presence of excess p-toluenesulfonic acid is also possible (Bodanszky, M., Bodanszky, A., unpublished). Thus a suspension of L-leucine (1.31 g, 10 mmol) in methanol (50 ml) was treated with p-toluene-sulfonic acid monohydrate (3.8 g, 20 mmol), and the resulting solution boiled under reflux for 24 hours. Evaporation to dryness and trituration of the residue with ether (100 ml) followed by washing with ether yielded L-leucine methyl ester p-toluenesulfonate (3.0 g, 95%) melting at 172–174 °C; [α] 22D + 7.8° (c 5, H2O); +11.6° (c 6.9, methanol). Recrystallization from hot acetone raised the m.p. to 173–175 °C. The same compound obtained through the reaction of the amino acid with methyl sulfite in the presence of p-toluenesulfonic acid (Theobald, J. M., Williams, M. W., Young, G. T.: J. Chem. Soc. 1963, 1927) melted at 175.5–176 °C.; [α] 21D + 11.6° (c 6.9 methanol).

    Article  CAS  Google Scholar 

  38. Curtius, T.: Ber. dtsch. Chem. Ges. 16, 753 (1883)

    Article  Google Scholar 

  39. Fischer, E.: Ber. dtsch. Chem. Ges. 34, 433 (1901);

    Article  CAS  Google Scholar 

  40. Fischer, E.: Ber. dtsch. Chem. Ges. 41, 850 (1908)

    Article  CAS  Google Scholar 

  41. The here described procedure (Bodanszky, M., Bodanszky, A., unpublished) is an adaptation of the method used for the preparation of benzyl esters; cf. Miller, H. K., Waelsch, H.: J. Amer. Chem. Soc. 74, 1902 (1952)

    Article  Google Scholar 

  42. Zervas, L., Winitz, M., Greenstein, J. P.: J. Org. Chem. 22, 1515 (1955)

    Article  Google Scholar 

  43. Wang, S. S., Gisin, B. F., Winter, D. P., Makofske, R., Kulesha, I. D., Tzougraki, C., Meienhofer, J.: J. Org. Chem. 42, 1286 (1977). The same procedure can also be applied for the preparation of methyl, trityl, a-methylphenacyl and hydroxy-phthalimide esters.

    Article  CAS  Google Scholar 

  44. Sachs, H., Brand, E.: J. Amer. Chem. Soc. 75, 4610 (1953)

    Article  CAS  Google Scholar 

  45. Merrifield, R. B.: J. Amer. Chem. Soc. 85, 2149 (1963)

    Article  CAS  Google Scholar 

  46. Bodanszky, M., Fagan, D. T.: Int. J. Peptide Protein Res. 10, 375 (1977)

    Article  CAS  Google Scholar 

  47. Bodanszky, M., Sheehan, J. T.: Chem. & Ind. 1966, 1597

    Google Scholar 

  48. Beyerman, H. C., in’t Veld, R. A.: Recueil 88, 1019 (1969)

    Article  CAS  Google Scholar 

  49. Schreiber, J., in Peptides 1966 (Beyerman, H. C. et al., eds.). North Holland Publ. Amsterdam: 1967, p. 107

    Google Scholar 

  50. Stewart, F. H. C.: Austr. J. Chem. 21, 1639 (1968)

    Article  CAS  Google Scholar 

  51. The resin swells in toluene (Khan, S. A., Sivanandaiah, K. M.: Chem. Commun. 1976, 614). In more polar solvents racemization might take place.

    Google Scholar 

  52. Sandrin, E., Boissonnas, R. A.: Helv. Chim. Acta 46, 1637 (1963)

    Article  CAS  Google Scholar 

  53. Bodanszky, M., du Vigneaud, V.: J. Amer. Chem. Soc. 81, 5688 (1959)

    Article  CAS  Google Scholar 

  54. Bodanszky, M., Conklin, L. E.: Chem. Commun. 1967713

    Google Scholar 

  55. Mazur, R. H., Schlatter, J. M.: J. Org. Chem. 28, 1025 (1963). The paper describes the preparation of 4-nitrobenzyl esters of several more amino acids.

    Article  CAS  Google Scholar 

  56. 4-Nitrobenzyl esters were prepared also via the benzyloxycarbonylamino acids (Schwarz, H., Arakawa, K.: J. Amer. Chem. Soc. 81, 5691 (1959))

    Article  CAS  Google Scholar 

  57. Weygand, F., Hunger, K.: Chem. Ber. 95, 1 (1962);

    Article  CAS  Google Scholar 

  58. cf. also McKay, F. C., Albertson, N. F.: J. Amer. Chem. Soc. 79, 4686 (1957)

    Article  CAS  Google Scholar 

  59. Stewart, F. H. C: Austral. J. Chem. 21, 2543 (1968)

    Article  CAS  Google Scholar 

  60. Bodanszky, M., du Vigneaud, V.: Biochem. Prep. 9, 110 (1962)

    CAS  Google Scholar 

  61. When the same compound was obtained by condensing benzyloxycarbonyl-glycine and 4-methoxybenzyl alcohol with the aid of dicyclohexylcarbodiimide (ref. 1) a melting point of 60 °C was observed. Esterification with the help of dimethylformamide dineopentyl acetal (Brechbühler, H., Büchi, H., Hatz, E., Schreiber, J., Eschenmoser, A.: Helv. Chim. Acta 48, 1746 (1965) gave a product melting at 61.5–62.2 °C.

    Article  Google Scholar 

  62. Aboderin, A. A., Delpierre, G. R., Fruton, J. S.: J. Amer. Chem. Soc. 87, 5469 (1965)

    Article  CAS  Google Scholar 

  63. Benzhydryl esters were also prepared through the reaction of diphenylchloro-methane with silver or triethylammonium salts of N-acylamino acids (Stelakatos, G. C., Paganou, A., Zervas, L.: J. Chem. Soc. (C) 1966, 1191). Direct esterification with diphenylmethanol has also been described (Hiskey, R. G., Adams, J. B., Jr.: J. Amer. Chem. Soc. 87, 3969 (1965)). Benzhydryl esters are cleaved by alkaline hydrolysis, by HCl in nitromethane or in ethyl acetate, HBr in nitromethane and also by hydrogenolysis.

    Article  CAS  Google Scholar 

  64. Smith, L. I., Howard, K. L.: Organic Syntheses, Coll. Vol. Ill, Wiley and Sons, New York, 1955, p. 351

    Google Scholar 

  65. Nefkens, G. H. L., Tesser, G. I., Nivard, R. J. F.: Rec. Trav. Chim. Pay-Bas 82, 941 (1963)

    Article  CAS  Google Scholar 

  66. Pucher, G. W., Johnson, T. B.: J. Amer. Chem. Soc. 44, 817 (1922)

    Article  CAS  Google Scholar 

  67. Anderson, G. W., Callahan, F. M.: J. Amer. Chem. Soc. 82, 3359 (1960)

    Article  CAS  Google Scholar 

  68. Taschner, E., Chimiak, A., Bator, B., Sokolowska, T.: Justus Liebigs Ann. Chem. 646, 134(1961)

    Article  CAS  Google Scholar 

  69. Roeske, R.: J. Org. Chem. 28, 1251 (1963)

    Article  CAS  Google Scholar 

  70. Stelakatos, G. C., Paganou, A., Zervas, L.: J. Chem. Soc. (C) 1966, 1191

    Google Scholar 

  71. Phenacyl esters are cleaved by sodium thiophenoxide (Sheehan, J. C., Daves, G. D., Jr.: J. Org. Chem. 29, 2006 (1964)) and also by hydrogenolysis (cf. ref. 1).

    Article  CAS  Google Scholar 

  72. Sieber, P.: Helv. Chim. Acta 60, 2711 (1977)

    Article  CAS  Google Scholar 

  73. Speier, J. L., Webster, J. A., Barnes, G. H.: J. Amer. Chem. Soc. 79, 974 (1957);

    Article  CAS  Google Scholar 

  74. Gerlach, H.: Helv. Chim. Acta 60, 3039 (1977). The alcohol is commercially available.

    Article  CAS  Google Scholar 

  75. Cambie, R., Garner, R., Young, G. T.: J. Chem. Soc. (C) 1969, 1911

    Google Scholar 

  76. Bednarek, M. A., Bodanszky, M.: Int. J. Peptide Protein Res. 21, 196 (1983)

    Article  CAS  Google Scholar 

  77. Kessler, H., Siegmeier, R.: Tetrahedron Letters, 1983, 281

    Google Scholar 

  78. Stewart, F. H. C.: Austr. J. Chem. 21, 1639 (1968)

    Article  CAS  Google Scholar 

  79. Bodanszky, M., Funk, K. W., Fink, M. L.: J. Org. Chem. 38, 3565 (1973)

    Article  CAS  Google Scholar 

  80. Jones, J. H., Young, G. T.: J. Chem. Soc. (C) 1968, 436

    Google Scholar 

  81. Cowell, R. D., Jones, J. H.: J. Chem. Soc. Perkin I, 1972, 2236

    Google Scholar 

  82. Catechol monobenzyl ether. Cf. ref. 1 and also J. Druey, Bull. Soc. Chim. France 52, 1737 (1935). Commercially available.

    Google Scholar 

  83. Sugano, H., Miyoshi, M.: J. Org. Chem. 41, 2352 (1976)

    Article  CAS  Google Scholar 

  84. The here described procedure is a modification of an earlier proposed method which gave somewhat lower yields (Hruby, V. J., Ehler, K. W.; J. Org. Chem. 35, 1690(1970))

    Article  CAS  Google Scholar 

  85. Wünsch, E., Jentsch, J.: Chem. Ber. 97, 2490 (1964)

    Article  Google Scholar 

  86. Wünsch, E., Fries, G., Zwick, A.: Chem. Ber. 91, 542 (1958)

    Article  Google Scholar 

  87. Schallenberg, E. E., Calvin, M.: J. Amer. Chem. Soc. 77, 2779 (1955);

    Article  CAS  Google Scholar 

  88. cf. also Greenstein, G. P., Winitz, M.: Chemistry of the Amino Acids, Wiley and Sons, New York, 1961, p. 915

    Google Scholar 

  89. Hauptschein, M., Stokes, C. S., Nodiff, E. A.: J. Amer. Chem. Soc. 74, 4005 (1952). Commercially available as s-ethyl trifluorothioacetate.

    Article  CAS  Google Scholar 

  90. Roeske, R., Stewart, F. H. C., Stedman, R. J., du Vigneaud, V.: J. Amer. Chem. Soc. 78, 5883 (1956);

    Article  CAS  Google Scholar 

  91. cf. also Erlanger, B. F., Sachs, H., Brand, E.: J. Amer. Chem. Soc. 76, 1806 (1954) for the preparation of the next homolog of Nε-tosyl-L-lysine, namely Nϑ-tosyl-L-ornithine.

    Article  CAS  Google Scholar 

  92. Decomposition of copper complexes is possible also without the use of H2S. To a suspension of the copper complex (10 mmol) in water (50 ml) thioacetamide (1.12 g, 15 mmol) is added, then 2 N NaOH to bring the pH of the suspension to 8. The mixture is stirred at room temperature for one day. The pH is lowered to 1.6 by the addition of 2 N HCl and the cupric sulfide removed by filtration. The filtrate is neutralized to precipitate the product. (Tavlor, U. F., Dyckes, D. F., Cox, J. R., Jr.: Internat. J. Peptide Protein Res. 19, 158 (1982)).

    Google Scholar 

  93. Hofmann, K., Peckham, W. D., Rheiner, A.: J. Amer. Chem. Soc. 78, 238 (1956)

    Article  CAS  Google Scholar 

  94. Nitro-L-arginine isolated from nitrated proteins (Kossel, A., Kenneway, E. L.: Hoppe Seyler’s Z. Physiol. Chem. 72, 486 (1911) melted at 227–228 °C,

    Article  CAS  Google Scholar 

  95. while the same material prepared by nitration of arginine nitrate salt was found (Bergmann, M., Zervas, L., Rinke, H.: Hoppe Zeyler’s Z. Physiol. Chem. 224, 40 (1934) to have a (corrected) m.p. of 263 °C (dec).

    Article  CAS  Google Scholar 

  96. Ramachandran, J., Li, C. H.: J. Org. Chem. 27, 4006 (1962)

    Article  CAS  Google Scholar 

  97. Boissonnas, R. A., Guttmann, S., Huguenin, R. L., Jaquenoud, P. A., Sandrin, E.: Helv. Chim. Acta 41, 1867 (1958);

    Article  CAS  Google Scholar 

  98. Zervas, L., Winitz, M., Greenstein, J. P.: J. Org. Chem. 26, 3348 (1962);

    Google Scholar 

  99. cf. also Bergmann, M., Zervas, L.: Ber. dtsch. Chem. Ges. 65, 1192 (1932). The preparation of this compound is described in the present volume on p. 13.

    Article  Google Scholar 

  100. Jäger, G., Geiger, R.: Chem. Ber. 103, 1727 (1970)

    Article  Google Scholar 

  101. Boissonnas, R. A., Guttmann, S., Huguenin, R. L., Jaquenoud, P. A., Sandrin, E.: Helv. Chim. Acta 41, 1867 (1958). The preparation of Nα-benzyloxycarbonyl-L-arginine is described in this volume on p. 13.

    Article  CAS  Google Scholar 

  102. Haas, W. L., Krumkalns, E. V., Gerzon, K.: J. Amer. Chem. Soc. 88, 1988 (1966). The preparation of the chlorocarbonate is described on page 243 of this volume.

    Article  CAS  Google Scholar 

  103. Sakakibara, S., Fujii, T.: Bull. Chem. Soc. Japan 42, 1466 (1969)

    Article  CAS  Google Scholar 

  104. Fujii, T., Sakakibara, S.: Bull. Chem. Soc. Japan 47, 3146 (1974)

    Article  CAS  Google Scholar 

  105. Akabori, S., Okawa, K., Sakiyama, F.: Nature 181, 772 (1958);

    Article  CAS  Google Scholar 

  106. Sakiyama, F., Okawa, K., Yamakawa, T., Akabori, S.: Bull. Chem. Soc. Japan 31, 926 (1958)

    Article  CAS  Google Scholar 

  107. This intermediate is suitable for the preparation of N-blocked derivatives. It can be dissolved in aqueous NaHCO3 and treated e.g., with tert.butyl azidocarbonate. The Nim-tosyl group is resistant to moderately strong acids and requires HF for its removal. On the other hand the tosyl group is cleaved from the imidazole nucleus by nucleophiles. Thus it can migrate to free α-amino groups and is displaced by 1-hydroxybenzotriazole with the formation of 1-tosyloxybenzotriazole [2]. The related Nim-p-methoxysulfonyl group (Kitagawa, K., Kitade, K., Kiso, Y., Akita, T., Funakoshi, S., Fujii, N., Yajima, H.: J. Chem. Soc. Chem. Commun. 1979, 955) is cleaved by trifluoroacetic acid in the presence of dimethyl sulfide at room temperature in about an hour.

    Google Scholar 

  108. An important development in the masking of the imadazole nucleus in histidine is the benzyloxymethyl group selectively blocking the π-nitrogen atom of the ring (Jones, J. H., Ramage, W. I., J. Chem. Soc. Chem. Commun. 1978, 472; Fletcher, A. R., Jones, J. H., Ramage, W. I., Stachulski, A. V., J. Chem. Soc. Per-kin I 1979, 2261; Brown, T., Jones, J. H., J. Chem. Soc. Chem. Commun. 1981, 648; Brown, T., Jones, J. H., Richards, J. D., J. Chem. Soc. Perkin I 1982, 1553).

    Google Scholar 

  109. Ohno, M., Tsukamoto, S., Makisumi, S., Izumiya, N.: Bull. Chem. Soc. Jpn. 45, 2852(1972)

    Article  CAS  Google Scholar 

  110. Benoiton, L.: Can. J. Chem. 40, 570 (1962)

    Article  CAS  Google Scholar 

  111. Zervas, L., Hamalidis, C: J. Amer. Chem. Soc. 87, 99 (1965)

    Article  CAS  Google Scholar 

  112. Sachs, H., Brand, E.: J. Amer. Chem. Soc. 75, 4610 (1953); cf. also this volume, p. 39

    Article  CAS  Google Scholar 

  113. Schwyzer, R., Kappeier, H.: Helv. Chim. Acta 44, 1991 (1961)

    Article  CAS  Google Scholar 

  114. Aspartic acid β-tert.butylester (m.p. 189–190 °C, [α] 23D + 8.5° (c 1, 90% AcOH)) is prepared in an analogous manner (Schwyzer, R., Dietrich, H.: Helv. Chim. Acta 44, 2003 (1961))

    Article  CAS  Google Scholar 

  115. König, W., Geiger, R.: Chem. Ber. 103, 2041 (1970)

    Article  Google Scholar 

  116. The 4,4′-dimethoxybenzhydryl group is cleaved by trifluoroacetic acid, preferably in the presence of anisole [1]. Heating solutions of benzyloxycarbonyl-N-4,4′-dimethoxybenzhydryl-L-glutaminyl peptides in a 9:1 mixture of trifluoroacetic acid and anisole to reflux for one and a half hour results in the formation of pyroglutamyl peptides (cf. König, W., Geiger, R.: Chem. Ber. 105, 2872 (1972))

    Article  Google Scholar 

  117. Wood, J. L., du Vigneaud, V.: J. Biol. Chem. 130, 109 (1939)

    CAS  Google Scholar 

  118. Guttmann, S.: Helv. Chim. Acta 49, 83 (1966)

    Article  Google Scholar 

  119. Marbach, P., Rudinger, J.: Helv. Chim. Acta 57, 403 (1974)

    Article  CAS  Google Scholar 

  120. Acetamide (10 g) is hydroxymethylated by adding it to a solution of K2CO3 (1 g) in formaldehyde (12.3 g of a 41% solution). The mixture is heated on a steam bath for about 3 minutes and then allowed to stand at room temperature overnight. The solution is saturated with CO2 and evaporated in vacuo, the residue is treated with anhydrous Na2SO4 and extracted with acetone. The acetone extracts are further dried with Na2SO4 and evaporated to dryness. The product, a colorless, oil, solidifies on standing to a crystalline mass (m.p. 50–52 °C) which is quite hygroscopic. (Einhorn, A.: J. Liebigs Ann. Chem. 343, 265 (1905)).

    Google Scholar 

  121. Veber, D. F., Milkowski, J. D., Varga, S. L., Denkewalter, R. G., Hirschmann, R. (J. Amer. Chem. Soc. 94, 5456 (1972)) report a m.p. of 159–163 °C and [α]D -30.7°(c 1, H2O).

    Article  CAS  Google Scholar 

  122. Hiskey, R. G., Adams, J. B., Jr.: J. Org. Chem. 30, 1340 (1965)

    Article  CAS  Google Scholar 

  123. Slightly lower m.p. and specific rotation were recorded in a process in which triphenylchloromethane (trityl chloride) was used for the alkylation of the sulf-hydryl group. (Zervas, L., Photaki, L: J. Amer. Chem. Soc. 84, 3887 (1962)).

    Article  CAS  Google Scholar 

  124. Iselin, B.: Helv. Chim Acta 44, 61 (1961). The original process in which oxidation with hydrogen peroxide was carried out in acetic acid, was modified by the present authors.

    Article  CAS  Google Scholar 

  125. Bodanszky, M., Bednarek, M. A.: Int. J. Peptide Protein Res. 20, 408 (1982)

    Article  CAS  Google Scholar 

  126. Scoffone, E., Rocchi, R., Vidali, G., Scatturin, V., Marchiori, I.: Gazz. Chim. Ital. 943 (1964); C. A. 61 13409b

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bodanszky, M., Bodanszky, A. (1984). Protecting Groups. In: The Practice of Peptide Synthesis. Reactivity and Structure Concepts in Organic Chemistry, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96835-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96835-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96837-2

  • Online ISBN: 978-3-642-96835-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics