Tissue Respiration

  • J. Grote

Abstract

The term tissue respiration denotes the exchange of respiratory gases within an aggregation of cells in the course of the biological oxidation of nutrients. The oxygen received by the cells from the capillary blood is consumed in oxidative metabolism, and at the same time the metabolic end product carbon dioxide is released into the capillary blood [8]. Here “tissue respiration” is used in a broader sense than in many biochemistry textbooks, where tissue respiration is defined as the oxidative breakdown of nutrients with the participation of molecular oxygen. Because O2 deficiency in the tissues limits these reactions more effectively than inadequate removal of CO2, we shall concentrate on questions related to the supply of oxygen to the tissues.

Keywords

Surfactant Fermentation Convection Ischemia Lactate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Handbooks

  1. 1.
    Bauereisen, E.: Physiologie des Kreislaufs, Bd.1. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  2. 2.
    Jobsis, F. F.: Basic processes in cellular respiration. In: Handbook of Physiology. Sect. 3: Respiration, Vol. I, p. 63. Washington D. C.: American Physiological Society 1964Google Scholar
  3. 3.
    Johnson, P. C.: Peripheral Circulation. New York-Chichester-Brisbane-Toronto: Wiley and Sons 1978Google Scholar
  4. 4.
    Lehninger, A. L.: Bioenergetics. The Molecular Basis of Biological Energy Transformations. New York-Amsterdam: Benjamin 1965Google Scholar
  5. 5.
    Luft, U.C.: Aviative physiology - the effects of altitude. In: Handbook of Physiology, Sect. 3: Respiration, Vol. II. p. 1099, Washington D. C.: American Physiological Society 1965Google Scholar
  6. 6.
    Purves, M.J.: The Physiology of the Cerebral Circulation. Cambridge: University Press 1972Google Scholar
  7. 7.
    Roughton, F.J.W.: Transport of oxygen and carbon dioxide. In: Handbook of Physiology. Sect. 3: Respiration, Vol.1, p. 767. Washington D. C.: American Physiological Society 1964Google Scholar
  8. 8.
    Ruch, T. C., Patton, H. D.: Physiology and Biophysics, Vol. II: Circulation, Respiration and Fluid Balance. Philadelphia-London-Toronto: Saunders 1974Google Scholar
  9. 9.
    Surgenor, D.Mac N.: The Red Blood Cell, Vol.I and II, 2nd ed., New York-London: Academic Press 1974Google Scholar
  10. 10.
    Bassenge, E.: Direct autonomic control of the coronary system. Pflügers Arch. 373, R6 (1978)Google Scholar

Research Reports and Reviews

  1. 11.
    Betz, E.: Cerebral blood flow: its measurement and regulation. Physiol. Rev., 52, 595 (1972)PubMedGoogle Scholar
  2. 12.
    Bretschneider, H.J.: Sauerstoffbedarf und -Versorgung des Herzmuskels. Verh. dtsch. Ges. Kreisl.-Forsch. 27, 32 (1961)Google Scholar
  3. 13.
    Bretschneider, H.J.: Die hämodynamischen Determinanten des myokardialen Sauerstoffverbrauchs. In: Die therapeutische Anwendung β-sympathikolytischer Stoffe (Dengler, H. J., Ed.), p. 45. Stuttgart, New York: Schattauer 1972Google Scholar
  4. 14.
    Burton, R, Krebs, H.A.: The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcohol fermentation and with hydrolysis of the pyrophosphate groups of adenosintriphosphate. Biochem. J. 54, 94 (1953)Google Scholar
  5. 15.
    Chance, B., Schoener, B., Schindler, F.: The intracellular oxidation-reduction state. In: Oxygen in the Animal Organism (Dickens, F., Neil, E., Eds.), p. 367. Oxford: Pergamon Press 1964Google Scholar
  6. 16.
    Deetjen, P.: Normal and critical oxygen supply of the kidney. In: Oxygen Transport in Blood and Tissue (Lübbers, D.W., Luft, C, Thews, G., Witzleb, E., Eds.), p. 212. Stuttgart: Thieme 1968Google Scholar
  7. 17.
    Greenway, C.V., Stark, R.D.: Hepatic vascular bed. Physiol. Rev. 51, 23 (1971)PubMedGoogle Scholar
  8. 18.
    Grote, J., Thews, G.: Die Bedingungen für die Sauerstoffversorgung des Herzmuskelgewebes. Pflügers Arch. 276, 142 (1962)CrossRefGoogle Scholar
  9. 19.
    Grote, J., Thews, G.: Respiratory gas transport in heart. In: Oxygen Transport to Tissue, Instrumentation, Methods, and Physiology (Bicher, H. I., Bruley, D. F., Eds.), p. 525. New York: Plenum Press 1973Google Scholar
  10. 20.
    Hudlicka, O.: Muscle Blood Flow, Its Relation to Muscle Metabolism and Function. Amsterdam: Sweets and Zeitlinger B. V. 1973Google Scholar
  11. 21.
    Greenbaum, R, Nunn, J.F., Prys-Roberts, C., Kelman, G.R: Metabolic changes in whole human blood (in vitro) at 37° C. Respir. Physiol. 2, 274–282 (1967)PubMedCrossRefGoogle Scholar
  12. 22.
    Kramer, K., Thurau, K., Deetjen, P.: Hämodynamik des Nierenmarks, 1. Mitteilung: Capilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshämatokrit und O2-Verbrauch des Nierenmarks in situ. Pflügers Arch. ges. Physiol. 270, 251 (1960)Google Scholar
  13. 23.
    Kreuzer, F.: Facilitated diffusion of oxygen and its possible significance: a review. Respir. Physiol. 9, 1 (1970)PubMedCrossRefGoogle Scholar
  14. 24.
    Krogh, A.: The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (Lond.) 52, 409 (1918/19)Google Scholar
  15. 25.
    Kunze, K.: Das Sauerstoffdruckfeld im normalen und pathologisch veränderten Muskel. In: Schriftenreihe Neurologie, Bd.3. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  16. 26.
    Kuschinsky, W., Wahl, M.: Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol. Rev.58, 656 (1973)Google Scholar
  17. 27.
    Lassen, N.A.: Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 39, 183 (1959)PubMedGoogle Scholar
  18. 28.
    Lübbers, D. W.: Local tissue PO2: its measurement and meaning. In: Oxygen Supply, Theoretical and Practical Aspects of Oxygen Supply and Microcirculation of Tissue (Kessler, M., Bruley, D. F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J., Eds.), p. 151, München-Berlin-Wien: Urban u. Schwarzenburg 1973Google Scholar
  19. 29.
    Lutz, J., Hennich, H, Bauereisen, E.: Oxygen supply and uptake in the liver and the intestine. Pflügers Arch. 360, 7 (1975)PubMedCrossRefGoogle Scholar
  20. 30.
    Reivich, M., Sokoloff, L., Kennedy, E., Des Rosiers, M.: An autoradiographic method for the measurement of local glucose metabolism in the brain. In: Brain Work (Ingvar, D.H., Lassen, N.A., Eds.), p. 377, Kopenhagen: Munksgaard 1975Google Scholar
  21. 31.
    Sakurado, O., Kennedy, C., Jehle, J., Brown, J.D., Carbin, G., Sokoloff, L.: Measurement of local cerebral blood flow with iodo 14C antipyrine. Am. J. Physiol. 234, H 59 (1978)Google Scholar
  22. 32.
    Starlinger, H, Lübbers, D. W.: Polarographic measurements of the oxygen pressure performed simultaneously with optical measurements of the redox state of the respiratory chain in suspensions of mitochondria under steady-state conditions at low oxygen tension. Pflügers Arch. 341, 15 (1973)PubMedCrossRefGoogle Scholar
  23. 33.
    Strauer, B. E.: Dynamik, Koronardurchblutung und Sauerstoffverbrauch des normalen und kranken Herzens. Experimentell-pharma- kologische Untersuchungen und Katheteruntersuchungen am Patienten. Basel, München, Paris, London, New York, Sydney: S. Karger 1975Google Scholar
  24. Thews, G.: Der Transport der Atemgase. Klin. Wschr. 41, 120 (1963)PubMedCrossRefGoogle Scholar
  25. 35.
    Vaupel, P, Wendling, P., Thome, H., Fischer, J.: Atemgaswechsel und Glucoseaufnahme der menschlichen Milz in situ. Klin. Wschr. 55, 329 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1983

Authors and Affiliations

  • J. Grote

There are no affiliations available

Personalised recommendations