Function of Nerve Cells

  • J. Dudel


The nervous system - the subject of the first part of this book - is composed of nerve cells or neurons. The human brain contains about 25 billion such nerve cells; it, together with the spinal cord, constitutes the central nervous system (CNS). Only about 25 million nerve cells lie in the periphery or connect the periphery to the central nervous system. The nerve cells communicate with one another in a variety of ways by synapses, which far outnumber (by about a thousand-fold) the nerve cells. Synaptic contacts are also made with other types of cell, in particular receptors (information-receiving cells - e. g., in the sense organs) and effectors (e.g., the muscle cells). Because receptors and muscle cells have many functional features in common with the nerve cells, they will also be discussed in this part of the book.


Membrane Potential Nerve Cell Conduction Velocity Axonal Transport Receptor Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Textbooks and Handbooks

  1. 1.
    Davson, H.: A Textbook of General Physiology, 4th Ed. London: Churchill 1970Google Scholar
  2. 2.
    Handbook of Physiology. I The Nervous System. Vol. 1 Cellular Biology of Neurons. Kandel, E.R. (Ed.) Baltimore: Williams & Wilkins 1977Google Scholar
  3. 3.
    Katz, B.: Nerve, Muscle and Synapse. New York: McGraw-Hill 1966Google Scholar
  4. 4.
    Kuffler, S.W., Nicholls, J.G.: From Neuron to Brain. Sunderland, Mass.: Sinauer Associates, Inc. 1976Google Scholar
  5. 5.
    Ruch, T.C., Patton, H.D.: Physiology and Biophysics. Philadelphia: Saunders 1966Google Scholar
  6. 6.
    Cooke, I., Lipkin, M.: Cellular Neurophysiology, a Source Book. New York: Holt, Rinehart and Winston 1972 (Collection of important original publications)Google Scholar

Research Reports and Reviews

  1. 7.
    Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133,631 (1956)Google Scholar
  2. 8.
    Adrian, R.H., Freygang, W.H.: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163,61 (1962)Google Scholar
  3. 9.
    Berthold, C. H.: Morphology of normal peripheral axons. In: Physiology and Pathobiology of Axons. Waxman, S.G. (Ed.) New York: Raven Press 1978Google Scholar
  4. 10.
    Cahalan, M.: Voltage clamp studies on the node of Ranvier. In: Physiology and Pathobiology of Axons. Waxman, S.G. (Ed.) New York: Raven Press 1978Google Scholar
  5. 11.
    Carpenter, D.O., Alving, B.O.: A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J. gen. Physiol. 52, 1 (1968)PubMedCrossRefGoogle Scholar
  6. 12.
    Dudel, J., Trautwein, W.: Elektrophysiologische Messungen zur Strophantinwirkung am Herzmuskel. Arch, exper. Path. Pharmakol. 232, 393(1958)CrossRefGoogle Scholar
  7. 13.
    Eccles, J.C.: The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press 1957Google Scholar
  8. 14.
    Frankenhaeuser, B., Hodgkin, A. L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218 (1957)Google Scholar
  9. 15.
    Frankenhaeuser, B., Huxley, A. F.: Action potential in myelinated nerve fibre of Xenopus laevis as computed on basis of voltage clamp data. J. Physiol. (Lond.) 171, 302 (1964)Google Scholar
  10. 16.
    Gasser, H.S., Grundfest, H.: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A- fibers. Amer. J. Physiol. 127, 393 (1939)Google Scholar
  11. 17.
    Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol. 59, 637 (1972)PubMedCrossRefGoogle Scholar
  12. 18.
    Hille, B.: Ionic channels in excitable membranes. Biophys. J. 22, 283–294(1978)PubMedCrossRefGoogle Scholar
  13. 19.
    Hodgkin, A. L., Horowicz, P.: The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J. Physiol. (Lond.) 153, 370 (1960)Google Scholar
  14. 20.
    Hodgkin, A. L., Huxley, A. F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449 (1952)Google Scholar
  15. 21.
    Hodgkin, A. L., Huxley, A. F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473 (1952)Google Scholar
  16. 22.
    Hodgkin, A. L., Huxley, A. F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497 (1952)Google Scholar
  17. 23.
    Hodgkin, A.L., Huxley, A.F.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500 (1952)Google Scholar
  18. 24.
    Hodgkin, A.L., Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28 (1955)Google Scholar
  19. 25.
    Hodgkin, A.L., Rushton, W.A.H.: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B133, 444 (1946)Google Scholar
  20. 26.
    Huxley, A.F., Stámpfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315 (1949)Google Scholar
  21. 27.
    Hoffman, J. F.: Molecular mechanism of active cation transport. In: Biophysics of Physiological and Pharmacological Actions (Shanes, Ed.) Washington: Amer. Ass. Adv. Sci. 1961Google Scholar
  22. 28.
    Katz, B.: Electrical properties of the muscle fibre membrane. Proc. roy. Soc. B135, 506 (1948)Google Scholar
  23. 29.
    Kuffler, S.W.: Mechanism of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol. 17, 558 (1954)PubMedGoogle Scholar
  24. 30.
    Lloyd, D.P.C., Chang, H.T.: Afferent fibers in muscle nerves. J. Neurophysiol. 11,199 (1948)PubMedGoogle Scholar
  25. 31.
    Lux, H.D.: Simultaneous measurement of extracellular potassium- ion activity and membrane currents in snail neurons. In: Ion and Enzyme Electrodes in Biology and Medicine. Kessler, R. (Ed.) Munich: Urban and Schwarzenberg 1976Google Scholar
  26. 32.
    Mullins, L. J., Awad, M.Z.: The control of the membrane potential of muscle fibers by the sodium pump. J. gen Physiol. 48,761 (1965)PubMedCrossRefGoogle Scholar
  27. 33.
    Narahashi, T.: Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31, 1124 (1972)PubMedGoogle Scholar
  28. 34.
    Narahashi, T., Moore, J.W.: Neuroactive agents and nerve membrane conductances. J. gen. Physiol. 51, 93 (1968)PubMedCrossRefGoogle Scholar
  29. 35.
    Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, 1 (1966)PubMedGoogle Scholar
  30. 36.
    Ochs, S., Worth, R. M.: Axoplasmic transport in normal and pathological systems. In: Physiology and Pathology of Axons. Waxman, S. G. (Ed.) New York: Raven Press 1978Google Scholar
  31. 37.
    Rang, H. P., Ritchie, J. M.: Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.) 196, 183 (1968)Google Scholar
  32. 38.
    Stámpfli, R., Hille, B.: Electrophysiology of frog peripheral myelinated nerve. In: Neurobiology of the Frog. Llinas, R., Precht, W. (Eds.) New York: Springer 1977Google Scholar
  33. 39.
    Terzuolo, C. A., Washizu, Y.: Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of crustacea. J. Neurophysiol. 25, 56 (1962)PubMedGoogle Scholar
  34. 40.
    Thomas, R. C.: Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52, 563–594 (1972)PubMedGoogle Scholar
  35. 41.
    Trachtenberg, N.C., Pollen, D. A.: Neuroglia biophysical properties in physiologic function. Science 67, 1248 (1970)CrossRefGoogle Scholar
  36. 42.
    Ulbricht, W.: Ionic channels and gating currents in excitable membranes. Ann. Rev. Biophys. Bioeng. 6, 7–31 (1977)CrossRefGoogle Scholar
  37. 43.
    Watson, W. E.: Physiology of neuroglia. Physiol. Rev. 54, 245 (1974)PubMedGoogle Scholar
  38. 44.
    Weidmann, S.: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.) 129, 568 (1955)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1983

Authors and Affiliations

  • J. Dudel

There are no affiliations available

Personalised recommendations