Advertisement

Quantum Field Theoretical Methods in Statistical Mechanics

  • Ryogo Kubo
  • Morikazu Toda
  • Natsuki Hashitsume
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 31)

Abstract

We have seen that macroscopic properties in a linear irreversible process are determined by the response function, the relaxation function, the complex admittance or the double-time correlation functions. This chapter briefly describes techniques for calculating these functions. Of course, there are many methods of calculation, each of which has its own merits and demerits and has particular key points to be considered. A simple example for the determination of the response function by using the kinetic theoretical method was given in Chap. 3.

Keywords

Spectral Function Feynman Diagram Perturbational Expansion External Line Dyson Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    N. N. Bogolyubov, S. V. Tyablikov: Sov. Phys. Dokl. 4,589 (1959)ADSMATHGoogle Scholar
  2. 5.2
    V. L. Bonch-Bruevich, S. V. Tyablikov: The Green Function Method in Statistical Mechanics (North-Holland, Amsterdam 1962)MATHGoogle Scholar
  3. 5.3
    D. N. Zubarev: Sov. Phys. Usp. 3,320 (1960)MathSciNetADSCrossRefGoogle Scholar
  4. 5.4
    A L. Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems (McGraw- Hill, New York 1971), pp. 21–25Google Scholar
  5. 5.5
    S. V. Tyablikov: Methods in Quantum Theory of Magnetism (Plenum, New York 1967)Google Scholar
  6. 5.6
    D. Bohm, D. Pines: Phys. Rev. 92,609 (1953);MathSciNetADSMATHCrossRefGoogle Scholar
  7. 5.6
    D. Pines: The Many-Body Problems (Benjamin, Reading MA 1962)Google Scholar
  8. 5.7
    L. P. Kadanoff, G. Baym: Quantum Statistical Mechanics (Benjamin Reading MA 1962)MATHGoogle Scholar
  9. 5.8
    S. Ichmaru: Rev. Mod. Phys. 54,1017 (1982)ADSCrossRefGoogle Scholar
  10. 5.9
    J. Lindhard: Dan. Mat.-Fys. Medd. 28, No 28 (1954)Google Scholar
  11. 5.10
    E. Wigner: Phys. Rev. 40,749 (1932)ADSMATHCrossRefGoogle Scholar
  12. 5.11
    Iu. L. Klimontovich: Sov. Phys. JETP 6,753 (1958)MathSciNetADSGoogle Scholar
  13. 5.12
    A A Vlasov: Zh. Eksp. Teor. Fiz. 8,291 (1938)Google Scholar
  14. 5.13
    L. D. Landau: J. Phys. USSR. 10,25 (1946)Google Scholar
  15. 5.14
    P. Debye, E. Hückel: Phys. Z. 24,185 (1923)Google Scholar
  16. 5.15
    A A Abrikosov, L. P. Gor’kov, I. E. Dzyaloshinskii: Method of Quantum Field Theory in Statistical Mechanics (Prentice-Hall, New York 1963)Google Scholar
  17. 5.16
    J. R. Schrieffer: Theory of Superconductivity (Benjamin, New York 1964)MATHGoogle Scholar
  18. 5.17
    G. C. Wick: Phys. Rev. 80,268 (1950)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 5.18
    R. P. Feynman: Phys. Rev. 76,749, 769 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 5.19
    T. Matsubara: Prog. Theor. Phys. 14,351 (1955)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 5.20
    F. J. Dyson: Phys. Rev. 75,486,1736 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 5.21
    A A. Abrikosov, L. P. Gor’kov, I. E. Dzyaloshinskii: Sov. Phys. JETP 9, 636 (1959); 10,186(1960)Google Scholar
  23. 5.22
    E S. Fradkin: Sov. Phys. JETP 9,912 (1959)MathSciNetMATHGoogle Scholar
  24. 5.23
    G. Baym, N. D. Mermin: J. Math. Phys. 2,232 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 5.24
    C. Bloch, C. De Dominicis: Nucl. Phys. 7,459 (1956); 10, 181, 509 (1959)Google Scholar
  26. 5.25
    C. De Dominies, P. Martin: J. Math. Phys. 5, 15, 31 (1964)ADSCrossRefGoogle Scholar
  27. 5.26
    A I. Larkin: Sov. Phys. JETP 10, 186 (1960)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ryogo Kubo
    • 1
    • 4
  • Morikazu Toda
    • 2
  • Natsuki Hashitsume
    • 3
  1. 1.Department of Physics, Faculty of Science and TechnologyKeio UniversityKohoku-ku, Yokohama 223Japan
  2. 2.Tokyo University of EducationShibuya-ku, TokyoJapan
  3. 3.Department of Physics, Faculty of ScienceOchanomizu UniversityTokyo 112Japan
  4. 4.University of TokyoJapan

Personalised recommendations