Physical Processes as Stochastic Processes

  • Ryogo Kubo
  • Morikazu Toda
  • Natsuki Hashitsume
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 31)


The previous chapter treated Brownian motion as the most typical stochastic process in physics. This chapter goes further to discuss the basic ideas of how statistical problems are treated as stochastic processes. In particular, the concept of Markovian processes plays a very important role in physics and so it is treated in detail, including the conditions for their validity. A fundamental problem is how a physical process is treated when it is no longer regarded as Markovian. It is not possible to discuss this thoroughly but we shall touch on it also.


Brownian Motion Markovian Process Boltzmann Equation Master Equation Langevin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    P. W. Anderson, P. R. Weiss: Rev. Mod. Phys. 25,269 (1954)ADSCrossRefGoogle Scholar
  2. 2.2
    P. W. Anderson: J. Phys. Soc. Jpn. 9,316 (1954)ADSCrossRefGoogle Scholar
  3. 2.3
    R. Kubo: J. Phys. Soc. Jpn. 9,935 (1954)ADSCrossRefGoogle Scholar
  4. 2.4
    R. Kubo: In Fluctuation, Relaxation and Resonance in Magnetic Systems, ed. by D. ter Haar (Oliver and Boyd, London 1982);Google Scholar
  5. 2.4
    R. Kubo: In Stochastic Processes in Chemical Physics, ed. by K. Shuler (Wiley, New York 1969)Google Scholar
  6. 2.5
    N. Bloembergen, E. M. Purcell, R. V. Pound: Phys. Rev. 70, 679 (1948);ADSCrossRefGoogle Scholar
  7. 2.5
    J. H. Van Vleck: Phys. Rev. 72, 1168 (1948)ADSCrossRefGoogle Scholar
  8. 2.6
    R. Kubo: J. Math. Phys. 4,174 (1962)MathSciNetADSCrossRefGoogle Scholar
  9. 2.7
    H. Kramers: Physica 7,284 (1940)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 2.8
    W. Feller: An Introduction to Probability Theory, Vol. 1 2nd ed. (Wiley, New York 1962);Google Scholar
  11. 2.8
    J. L. Doob: Stochastic Processes (Wiley, New York 1953)MATHGoogle Scholar
  12. 2.9
    R. Kubo: In Perspectives in Statistical Physics, ed. by J. Raveché (North-Holland, Amsterdam 1981)Google Scholar
  13. 2.10
    A Fokker: Dissertation, Leiden University (1913)Google Scholar
  14. 2.10
    M. Planck: Berl. Ber. p. 324, 1927;Google Scholar
  15. 2.10
    See references in G. E. Uhlenbeck, L. S. Ornstein: Phys. Rev. 36,823 (1930);ADSCrossRefGoogle Scholar
  16. 2.10
    H. Risken: The Fokker-Planck Equation, Springer Syn., Vol. 18 (Springer, Berlin, Heidelberg 1984)MATHGoogle Scholar
  17. 2.11
    K Ito: Proc. Imp. Acad. Tokyo 20,519 (1944);MathSciNetMATHCrossRefGoogle Scholar
  18. 2.11
    K Ito, H. McKean, Jr.: Diffusion Processes and their Sample Paths (Springer, Berlin, Heidelberg, New York 1965)MATHGoogle Scholar
  19. 2.12
    R. Stratonovich: J. SIAM Control 4,362 (1966)MathSciNetCrossRefGoogle Scholar
  20. 2.13
    R. E. Mortensen: J. Stat. Phys. 1,271 (1969);ADSCrossRefGoogle Scholar
  21. 2.13
    M Suzuki: Prog. Theor. Phys. Suppl. 69,160 (1980)ADSCrossRefGoogle Scholar
  22. 2.14
    J. L. Doob: Ann. Am. Stat. 15,229 (1944); Ann. Math. 43,351 (1942);MathSciNetMATHGoogle Scholar
  23. 2.14
    M. C. Wang, G. E. Uhlenbeck: Rev. Mod. Phys. 17,323 (1945)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 2.15
    S. Nakajima: Prog. Theor. Phys. 20,948 (1958);MathSciNetADSMATHCrossRefGoogle Scholar
  25. 2.15
    R Zwanzig: J. Chem. Phys. 33,1338 (1960);MathSciNetADSCrossRefGoogle Scholar
  26. 2.15
    H. Mori: Prog. Theor. Phys. 33,424 (1965);ADSCrossRefGoogle Scholar
  27. 2.15
    The projection operator method is essentially the same as the damping theory used in quantum mechanics: see W. Heitler: The Quantum Theory of Radiation, 2nd ed. (Oxford Univ. Press, Oxford 1944)Google Scholar
  28. 2.15
    A Messiah: Mechanique Quantique Dunod, Paris 1959), Quantum Mechanics (North- Holland, Amsterdam 1961)Google Scholar
  29. 2.16
    W. Pauli: In Probleme der Modernen Physik, Festschrift zum 60. Geburtstag A. Sommerfelds, ed. by P. Debye (Hirzel, Leipzig 1928)Google Scholar
  30. 2.17
    L. Van Hove: Physica 21,517 (1955); 23,441 (1957);MathSciNetMATHGoogle Scholar
  31. 2.17
    R. Brout, I. Prigogine: Physica 22,621 (1956)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 2.18
    F. Englert: J. Phys. Chem. Solids 11,78 (1959). This work ist probably the first which formulated this problem in the form of (2.7.24). There have been a great number of papers which repeat essentially the same thingMathSciNetADSCrossRefGoogle Scholar
  33. 2.19
    W. Weidlich, F. Haake: Physik 185,30 (1965)MATHCrossRefGoogle Scholar
  34. 2.20
    L. Boltzmann: Vorlesungen über Gastheorie, 2 Bde. (Barth, Leipzig 1912); Lectures on Gas Theory (Univ. of California Press, Berkeley 1964)MATHGoogle Scholar
  35. 2.21
    N. Bogolyubov: In Studies in Statistical Mechanics, Vol. 1 ed. by G. E. Uhlenbeck, J. Boer (North-Holland, Amsterdam 1962)Google Scholar
  36. 2.22
    J. R. Dorfman: In Perspectives in Statistical Physics, ed. by H. J. Raveché (North-Holland, Amsterdam 1981). This is a recent review of the problemGoogle Scholar
  37. 2.23
    L. D. Landau: J. Exp. Theor. Phys. (USSR) 30, 1058 (1956); Sov. Phys. 3,920 (1957);Google Scholar
  38. 2.23
    D. Pines, P. Nozières: The Theory of Quantum Liquids, Vol. 1 (Benjamin, New York 1966)Google Scholar
  39. 2.24
    H. Mori: Prog. Theor. Phys. 33,424 (1965)ADSCrossRefGoogle Scholar
  40. 2.25
    R. Kubo: Rep. Prog. Phys. 29, Part I, 255 (1966)ADSCrossRefGoogle Scholar
  41. 2.26
    J. Kirkwood: J. Chem. Phys. 14,180 (1946)ADSCrossRefGoogle Scholar
  42. 2.27
    M. Huberman, G. V. Chester: Adv. Phys. 24,489 (1975) See also R. Kubo: In Transport Phenomena, ed. by G. Kirczenow and J. Maro, Lecture Notes Phys., Vol. 31 (Springer, Berlin, Heidelberg 1974)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ryogo Kubo
    • 1
    • 4
  • Morikazu Toda
    • 2
  • Natsuki Hashitsume
    • 3
  1. 1.Department of Physics, Faculty of Science and TechnologyKeio UniversityKohoku-ku, Yokohama 223Japan
  2. 2.Tokyo University of EducationShibuya-ku, TokyoJapan
  3. 3.Department of Physics, Faculty of ScienceOchanomizu UniversityTokyo 112Japan
  4. 4.University of TokyoJapan

Personalised recommendations