Outlines of Statistical Mechanics

  • Morikazu Toda
  • Ryogo Kubo
  • Nobuhiko Saitô
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 30)


In this chapter, we start with certain principles and describe the general method of statistical mechanics [2.1–17]. If we assume that every quantum-mechanical state (microscopic state) has the same weight (the principle of equal probability), then we can establish a standpoint where mechanical laws are combined with probability theory. By considering a system in contact with a larger system, we can describe a system with constant temperature or constant pressure. Thus, we develop the statistical mechanics for an equilibrium state (statistical mechanics in a narrow sense) and we can also find a microscopic interpretation of the laws in thermodynamics.


Quantum State Statistical Mechanic Canonical Ensemble Combine System External Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    L.D. Landau, E.M. Lifshitz: Statistical Physics (transi. by D. Shoenberg, Clarendon Press, Oxford 1938, Pergamon 1958)MATHGoogle Scholar
  2. 2.2
    J.E. Mayer, M.G. Mayer: Statistical Mechanics (John Wiley & Sons 1940)Google Scholar
  3. 2.3
    D. terHarr: Elements of Statistical Mechanics (Holt, Rinehart & Winston 1961)Google Scholar
  4. 2.4
    D. terHaar: Elements of Thermostatics (Holt, Rinehart & Winston 1966)Google Scholar
  5. 2.5
    R. Kubo, H. Ichimura, T. Usui, N. Hashitsume: Statistical Mechanics (North-Holland, Amsterdam 1965)Google Scholar
  6. 2.6
    C. Kittel: Elementary Statistical Mechanics (John Wiley & Sons 1958)Google Scholar
  7. 2.7
    R.W. Gurney: Introduction to Statistical Mechanics (McGraw-Hill 1949)Google Scholar
  8. 2.8
    G.S. Rushbrooke: Introduction to Statistical Mechanics (Oxford 1951)Google Scholar
  9. 2.9
    A. Sommerfeld: Thermodynamik und Statistik (Dietrich 1952) English transi. by J. Kestin: Thermodynamics and Statistical Mechanics (Academic Press 1956)Google Scholar
  10. 2.10
    R. Becker: Theorie der Wärme (Springer, Berlin, Göttingen, Heidelberg 1955)Google Scholar
  11. 2.11
    A. Münster: Statistische Thermodynamik (Springer, Berlin, Göttingen, Heidelberg 1956, English transi.: Statistical Thermodynamics, Springer, Berlin, Heidelberg, New York 1969)Google Scholar
  12. 2.12
    T.L. Hill: Statistical Mechanics (McGraw-Hill 1956)Google Scholar
  13. 2.13
    S. Flügge (ed.): Principles of Thermodynamics and Statics, Encyclopedia of Physics, Vol. 3, Part 2 (Springer, Berlin, Göttingen, Heidelberg 1959)Google Scholar
  14. 2.14
    K. Huang: Statistical Mechancis (John Wiley & Sons 1963)Google Scholar
  15. 2.15
    F. Reif: Statistical and Thermal Physics (McGraw-Hill 1965)Google Scholar
  16. 2.16
    G.H. Wannier: Statistical Physics (John Wiley & Sons 1966)Google Scholar
  17. 2.17
    A. Isihara: Statistical Mechanics (Academic Press, New York 1971)Google Scholar
  18. 2.18
    K. Husimi: Proc. Phys.-Math. Soc. Jpn. 22, 246 (1940)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1983

Authors and Affiliations

  • Morikazu Toda
    • 1
  • Ryogo Kubo
    • 2
  • Nobuhiko Saitô
    • 3
  1. 1.Yokohama National UniversityHodogaya-ku, Yokohama 240Japan
  2. 2.Faculty of Science and TechnologyKeio UniversityKohoku-ku, Yokohama 223Japan
  3. 3.Department of Applied PhysicsWaseda UniversityShinjuku-ku, Tokyo 160Japan

Personalised recommendations