Skip to main content

Knowledge Representation, Utilization, and Acquisition

  • Chapter
Book cover Pattern Analysis

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 4))

  • 110 Accesses

Abstract

The discussion in the last chapter showed that in analysis of complex patterns a solution may require searching a graph or tree in a search space which usually is very large. The task is nearly hopeless unless the search space can be reduced. A powerful tool for constraining the number of alternatives and reducing the search space is the incorporation of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britannica World Language Edition of Funk and Wagnalls Standard Dictionary (Encyclopedia Britannica Inc., Chicago 1962; Funk and Wagnalls Comp., New York 1962) “Knowledge”

    Google Scholar 

  2. Brockhaus Enzyklopädie (Brockhaus, Wiesbaden 1974) “Wissen”

    Google Scholar 

  3. A.R. Smith: “Word Hypothesization in a Large-Vocabulary Speech Understanding System”; Ph.D. Dissertation, Dept. Comput. Sci., Carnegie-Mellon University (Pittsburgh, PA 1977)

    Google Scholar 

  4. Y. Shirai: A context sensitive line finder for recognition of polyhedra. Artif. Intell. 4, 95–119 (1973)

    Article  Google Scholar 

  5. D. Marr: “Representing Visual Information”, in Ref. 1.24, pp. 61–80

    Google Scholar 

  6. B.K.P. Horn: Understanding image intensities. Artif. Intell. 8, 201–231 (1977)

    Article  MATH  Google Scholar 

  7. S.W. Zucker, A. Rosenfeld, L.S. Davis: General-purpose models, expectations about the unexpected. ACM-SIGART No.54, 7–11 (1975)

    Article  Google Scholar 

  8. H.G. Barrow, J.M. Tenenbaum: “Recovering Intrinsic Scene Characteristics from Images”, in Ref. 1.24, pp. 3–26

    Google Scholar 

  9. M.B. Clowes: “Transformational Grammars and the Organization of Pictures”, in Automatic Interpretation and Classification of Images, ed. by A. Grasselli (Academic, New York 1969) pp. 43–77

    Google Scholar 

  10. J. de Kleer: “Multiple Representations of Knowledge in a Mechanics Problem-Solver”, Proc. 5th Int. Joint Conf. on Artif. Intell., Cambridge, MA 1977, pp. 299–304

    Google Scholar 

  11. M. Minsky: “A Framework for Representing Knowledge”; Artificial Int. Memo No. 306, A.I. Laboratory, Mass. Inst, of Technology (Cambridge, MA 1974); also published in The Psychology of Computer Vision, ed. by P.H. Winston (McGraw-Hill, New York 1975)

    Google Scholar 

  12. I.P. Goldstein: “The FRL Primer”; AI Memo 408, Mass. Inst, of Technology (Cambridge, MA 1977)

    Google Scholar 

  13. W.S. Havens: “A Procedural Model of Recognition”, Proc. 5th Int. Joint Conf. on Artif. Intel!., Cambridge, MA 1977, p. 264

    Google Scholar 

  14. J.J. Horning: “A Study of Grammatical Inference”, TR-CS 139, Stanford Artificial Intelligence Project AIM-98, Computer Science Dept., Stanford University (1969)

    Google Scholar 

  15. A. Newell: “Production Systems; Models of Control Structures”, in Visual Information Processing, ed. by W.C. Chase (Academic, New York 1973) pp. 463–526

    Google Scholar 

  16. D.A. Waterman, F. Hayes-Roth: “An Overview of Pattern-Directed Inference Systems”, in Ref. 1.22, pp. 3–22

    Google Scholar 

  17. F. Hayes-Roth, D.A. Waterman: “Principles of Pattern-Directed Inference Systems”, in Ref. 1.22, pp. 577–601

    Google Scholar 

  18. R. Davis, J. King: “An Overview of Production Systems”, in Machine Intelligence 8, ed. by E.W. Elcock, D. Michie (Ellis Horwood, Chichester 1977) pp. 300–332

    Google Scholar 

  19. D.J. Rosenkranz: Programmed grammars and classes of formal languages. J. Assoc. Comput. Mach. 16, 107–131 (1969)

    Article  MathSciNet  Google Scholar 

  20. D. McCracken: “A Production System Version of the HEARSAY II Speech Understanding System”; Ph.D. Thesis, Dept. Comput. Sci., Carnegie-Mellon Univ. (Pittsburgh, PA 1978)

    Google Scholar 

  21. C.L. Forgy: “On the Efficient Implementation of Production Systems”; Ph.D. Thesis, Dept. Comput. Sci., Carnegie-Mellon Univ. (Pittsburgh, PA 1979)

    Google Scholar 

  22. D.J. Mostow, F. Hayes-Roth: “A Production System for Speech Understanding”, in Ref. 1.22, pp. 471–481

    Google Scholar 

  23. R. Engelmore, A. Terry: “Structure and Function of the CRYSALIS System”, Proc. 6th Int. Joint Conf. on Artif. Intell., Tokyo, Jpn. 1979, pp. 250–256

    Google Scholar 

  24. Y. Ohta, T. Kanade, T. Sakai: “A Production System for Region Analysis”, Proc. 6th Int. Joint Conf. on Artif. Intell., Tokyo, Jpn. 1979, pp. 684–686

    Google Scholar 

  25. P. Szolovits, S.G. Pauker: Categorical and probabilistic reasoning in medical diagnosis. Artif.Intell. 11, 115–144 (1978)

    Article  Google Scholar 

  26. M.L. Baird, M.D. Kelly: A paradigm for semantic picture recognition. Pattern Recognition 6, 61–74 (1974)

    Article  Google Scholar 

  27. R. Narasimhan: “A Linguistic Approach to Pattern Recognition”; Rpt. 121, Digital Comp. Lab., University of Illinois (Urbana, IL 1962)

    Google Scholar 

  28. R.C. Gonzalez, M.G. Thomason: Syntactic Pattern Recognition — An Introduction (Addison-Wesley, Reading MA 1978)

    MATH  Google Scholar 

  29. A. Rosenfeld: Picture Languages — Formal Models for Picture Recognition (Academic, New York 1979)

    MATH  Google Scholar 

  30. C. Morris: Signs, Language, and Behavior (Braziller, New York 1955)

    Google Scholar 

  31. H. Zemanek: Semiotics and programming languages. Commun. ACM 9, 139–143 (1966)

    Article  MATH  Google Scholar 

  32. J.E. Hopcroft, J.D. Ullman: Formal Languages and Their Relations to Automata (Addison-Wesley, Reading, MA 1969)

    Google Scholar 

  33. S.L. Horowitz: A syntactic algorithm for peak detection in waveforms with applications to cardiology. Commun. ACM 18, 281–285 (1975)

    Article  MATH  Google Scholar 

  34. A.C. Shaw: A formal picture description scheme as a basis for picture processing systems. Inf. Control 14, 9–52 (1969)

    Article  MATH  Google Scholar 

  35. S.I. Nakagawa: “A Machine Understanding System for Spoken Japanese Sentences”; Tech. Rpt., Dept. Information Science, Kyoto Univ. (1976)

    Google Scholar 

  36. J. Early: An efficient context-free parsing algorithm. Commun. ACM-13, 94–102 (1970)

    Article  Google Scholar 

  37. A.V. Aho, J.D. Ullman: The Theory of Parsing, Translation, and Compiling, Vol. I Parsing (Prentice-Hall, Englewood Cliffs, NJ 1972)

    Google Scholar 

  38. G. Stockman: “A Problem-Reduction Approach to the Linguistic Analysis of Waveforms”; TR-538, University of Maryland (College Park, MY 1977)

    Google Scholar 

  39. G.C. Stockman, L.N. Kanal, M.C. Kyle: “An Experimental Waveform Parsing Systems”, Proc. 2nd Int. Joint Conf. on Pattern Recognition, Copenhagen, Denmark 1974, pp. 450–459

    Google Scholar 

  40. P.A.N. Hall: Equivalence between AND/OR graphs and context-free grammars. Commun. ACM 16, 444–445 (1973)

    Article  MATH  Google Scholar 

  41. T. Cheatham, K. Satley: “Syntax Directed Compiling”, in Programming Systems and Languages, ed. by S. Rosen (McGraw-Hill, New York 1967) pp. 298–307

    Google Scholar 

  42. S.Y. Lu, K.S. Fu: Stochastic error-correcting syntax analysis for recognition of noisy patterns. IEEE Trans. C-26, 1268–1276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. C.R. Cook, P.S. Wang: A Chomsky hierarchy of isotonic array grammars and languages. Comput. Graph. Image Proc. 8, 144–152 (1978)

    Article  Google Scholar 

  44. P.A. Ota: Mosaic grammars. Pattern Recognition 7, 61–65 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  45. W.S. Brainerd: Tree generating regular systems. Inf. Control 14, 217–231 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  46. K.S. Fu, B.K. Bhargava: Tree systems for snytactic pattern recognition. IEEE Trans. C-22, 1087–1098 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  47. K.S. Fu: “Tree Languages and Syntactic Pattern Recognition”, in Ref. 1.15, pp. 257–291

    Google Scholar 

  48. S.Y. Lu, K.S. Fu: Error-correcting tree automata for syntactic pattern recognition. IEEE Trans. C-27, 1040–1053 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. W.A. Woods: Transition network grammars for natural language analysis. Commun. ACM 13, 591–606 (1970)

    Article  MATH  Google Scholar 

  50. S.M. Chou, K.S. Fu: “Transition Network Grammars for Syntactic Pattern Recognition”; Tech. Report TR-75-1297, Purdue Univ. (West Lafayette, IN 1975)

    Google Scholar 

  51. W. Woods, M. Bates, G. Brown, B. Bruce, C. Cook, J. Klovstad, J. Makhoul, B. Nash-Webber, R. Schwartz, J. Wolf, V. Zue: “Speech Understanding Systems, Vol. IV Syntax and Semantics”; Rep. No. 3438, Bolt, Beranek and Newman (Cambridge, MA 1976)

    Google Scholar 

  52. M. Kay: “Morphological and Syntactic Analysis”, in Linguistic Structure Processing, ed. by A. Zampolli (North-Holland, Amsterdam 1977) pp. 131–234

    Google Scholar 

  53. G. Görz: “ATN and Kontrollstrukturen”, in Augmented Transition Network Grammatiken, Teil 1, ed. by T. Christaller, D. Metzing (Einhorn, Berlin 1979) pp. 1–33

    Google Scholar 

  54. J.L. Pfaltz, A. Rosenfeld: “Web Grammars”, Proc. 1st Int. Joint Conf. on Artif. Intell., Washington, DC 1969, pp. 609–619

    Google Scholar 

  55. M. Nagl: Formal languages of labelled graphs. Computing 16, 113–137 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  56. H.J. Schneider, H. Ehrig: Grammars on partial graphs. Acta Inf. 6, 297–316 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  57. M.R. Quillian: “Semantic Memory”, in Semantic Information Processing, ed. by M. Minsky (MIT Press, Cambridge, MA 1968)

    Google Scholar 

  58. L.K. Schubert: Extending the expressive power of semantic networks. Artif. Intell. 7, 163–198 (1976)

    Article  MathSciNet  Google Scholar 

  59. D. McDonald, F. Hayes-Roth: “Inferential Searches of Knowledge Networks as an Approach to Extensible Language-Understanding Systems”, in Ref. 1.22, pp. 431–453

    Google Scholar 

  60. D.H. Ballard, C.M. Brown, J.A. Feldman: “An Approach to Knowledge-Directed Image Analysis”, in Ref. 1.24, pp. 271–281

    Google Scholar 

  61. H.G. Barrow, A.P. Ambler, R.M. Burstall: “Some Techniques for Recognising Structures in Pictures”, in Frontiers of Pattern Recognition, ed. by S. Watanabe (Academic, New York 1972), pp. 1–29

    Google Scholar 

  62. R.A. Brooks, R. Greiner, T.O. Binford: “The ACRONYM Model-Based Vision System”, Proc. 6th Int. Joint Conf. on Artif. Intell., Tokyo, Jpn. 1979, pp. 105–113

    Google Scholar 

  63. H. Niemann: “Hierarchical Graphs in Pattern Analysis”, Proc. 5th Int. Joint Conf. on Pattern Recognition, Miami, Florida 1980, pp. 213–216

    Google Scholar 

  64. D.A. O. Handley: Scene analysis in support of a Mars Robot. Comput. Graph. Image Proc. 2, 281–297 (1973)

    Article  Google Scholar 

  65. E.C. Freuder: “Structural Isomorphism of Picture Graphs”, in Ref. 1.15, pp. 248–256

    Google Scholar 

  66. M. Shneier: “A Compact Relational Structure Representation”, Proc. 6th Int. Joint Conf. on Artif. Intell., Tokyo, Jpn. 1979, pp. 818–826

    Google Scholar 

  67. N.I. Badler: “Temporal Scene Analysis—Conceptual Descriptions of Object Movements”; Tech. Rpt. No.80, Dept. Comput. Sci., University of Toronto (1975)

    Google Scholar 

  68. I.P. Goldstein: The genetic graph—a representation for the evolution of procedural knowledge. Int. J. Man-Mach. Stud. 11, 51–77 (1979)

    Article  Google Scholar 

  69. L.A. Zadeh: “Approximate Reasoning Based on Fuzzy Logic”, Proc. 6th Int. Joint Conf. on Artif.Intell., Tokyo, Jpn. 1979, pp. 1004–1011

    Google Scholar 

  70. D.G. Corneil, C.C. Gotlieb: An efficient algorithm for graph isomorphism. J. Assoc. Comput. Mach. 17, 51–64 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  71. E.H. Sussenguth: “Structure Matching in Information Processing”; Ph.D. Thesis, Appl. Math., Harvard University (Cambridge, MA 1964)

    Google Scholar 

  72. E.H. Sussenguth: A graph-theoretic algorithm for matching chemical structures. J. Chem. Doc. 5, 36–43 (1965)

    Article  Google Scholar 

  73. J.R. Ullman: An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach. 23, 31–42 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  74. A.P. Ambler, H.G. Barrow, C.M. Brown, R.M. Burstall, R.J. Popplestone: A versatile system for computer controlled assembly. Artif. Intell. 6, 129–156 (1975)

    Article  MATH  Google Scholar 

  75. R. Bertelsmeier, B. Radig: “Kontextunterstützte Analyse von Szenen mit bewegten Objekten”, in Digitale Bildverarbeitung, Digital Image Processing, ed. by H.H. Nagel, Informatik Fachberichte, Vol. 8 (Springer, Berlin, Heidelberg, New York 1977) pp. 101–128

    Google Scholar 

  76. F. Hayes-Roth: “Patterns of Induction and Associated Knowledge Acquisition Algorithms”, in Ref. 1.15, pp. 314–339

    Google Scholar 

  77. M. Yachida, S. Tsuji: A versatile machine vision system for complex industrial parts. IEEE Trans. C-26, 882–894 (1977)

    Article  Google Scholar 

  78. J.G. Augustson, J. Minker: An analysis of some graph theoretical cluster techniques. J. Assoc. Comput. Mach. 17, 571–588 (1970)

    Article  MATH  Google Scholar 

  79. C. Bron, J. Kerbosch: Finding all cliques of an undirected graph. Commun. ACM 16, 575–577 (1973)

    Article  MATH  Google Scholar 

  80. L.G. Shapiro, R.M. Haralick: “Algorithms for Inexact Matching”, Proc. 5th Int. Joint Conf. on Pattern Recognition, Miami, FL 1980, pp. 202–207 [IEEE Catalog No. 80 CH 1499-3]

    Google Scholar 

  81. A.R. Smith: “Word Hypothesization in the HEARSAY II Speech Understanding System”, Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, Philadelphia, PA 1976, pp. 549–552

    Google Scholar 

  82. A.R. Smith, M.R. Sambur: “Hypothesizing aod Verifying Words for Speech Recognition”, in Ref. 1.27, pp. 139–165

    Google Scholar 

  83. F. Jelinek: Continuous speech recognition by statistical methods. Proc. IEEE 64, 532–556 (1976)

    Article  Google Scholar 

  84. H.W. Hein, H. Niemann: “Expert Knowledge for Automatic Understanding of Continuous Speech”, Proc. 1st. European Signal Processing Conf., Lausanne, Switzerland 1980, pp. 647–651

    Google Scholar 

  85. G. Miller, S. Isard: Some perceptual consequences of linguistic rules. J. Verb. Learn. Verb. Behav. 2, 217–228 (1963)

    Article  Google Scholar 

  86. G.D. Forney: The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  87. V.I. Levenshtein: Binary codes capable of correcting deletion, insertions, and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  88. C. Fillmore: “The Case for Case”, in Universals in Linguistic Theory, ed. by E. Bach, R. Harms (Holt, Rinehart, and Winston, New York 1968) pp. 1–90

    Google Scholar 

  89. B. Bruce: Case systems for natural language. Artif. Intell. 6, 327–360 (1975)

    Article  MATH  Google Scholar 

  90. E. Charniak, Y. Wilks: Computational Semantics (North-Holland, Amsterdam 1976), Sect. II 4

    MATH  Google Scholar 

  91. A. Guzman: “Computer Recognition of Three-Dimensional Objects”; Ph.D. Thesis AI-TR-228, Artificial Int. Lab., Mass. Institute of Technology (Cambridge, MA 1968)

    Google Scholar 

  92. D. Waltz: “Understanding Line Drawings of Scenes with Shadows”, in The Psychology of Computer Vision, ed. by P.H. Winston (McGraw-Hill, New York 1975) pp. 19–91

    Google Scholar 

  93. M. Clowes: On seeing things. Artif. Intell. 2, 79–116 (1971)

    Article  Google Scholar 

  94. T. Kanade: “Recovery of the Three-Dimensional Shape of an Object from a Single View”; CMU-CS-79-153, Dept. Comput. Sci., Carnegie-Mellon University (Pittsburgh, PA 1979)

    Google Scholar 

  95. K. Sugihara: “Automatic Construction of Junction Dictionaries and Their Exploitation for the Analysis of Range Data”, Proc. 6th Int. Joint Conf. On Artif. Intel!., Tokyo, Jpn. 1979, pp. 859–864; see also Artif. Intell. 12, 41-69 (1979)

    Google Scholar 

  96. A. Rosenfeld, R.A. Hummel, S.W. Zucker: Scene labeling by relaxation operations. IEEE Trans. SMC-6, 420–433 (1976)

    MathSciNet  MATH  Google Scholar 

  97. J.M. Tenenbaum, H.G. Barrow: “IGS—A Paradigm for Integrating Image Segmentation and Interpretation”, in Ref. 1.15, pp. 472–507

    Google Scholar 

  98. A. Rosenfeld: “Iterative Methods in Image Analysis”, Proc. IEEE Conf. on Pattern Recognition and Image Proc, Troy 1977, pp. 14–18

    Google Scholar 

  99. S. Peleg: Ambiguity reduction in handwriting with ambiguous segmentation and uncertain interpretation. Comput. Graph. Image Proc. 10, 235–245 (1979)

    Article  Google Scholar 

  100. S. Peleg, A. Rosenfeld: “Determining Compatibility Coefficients for Relaxation Processes”; Tech. Rpt. TR 570, Comput. Sci. Center, University of Maryland (1977)

    Google Scholar 

  101. H. Yamamoto: A method of deriving compatibility coefficients for relaxation operators. Comput. Graph. Image Proc. 10, 256–271 (1979)

    Article  Google Scholar 

  102. R. Davis: “Knowledge Acquisition in Rule-Based Systems—Knowledge About Representations as a Basis for System Construction and Maintenance”, in Ref. 1.22, pp. 99–134

    Google Scholar 

  103. K.S. Fu, S.Y. Lu: A clustering procedure for syntactic patterns. IEEE Trans. SMC-7, 734–742 (1977)

    MathSciNet  MATH  Google Scholar 

  104. T.G. Dietterich, R.S. Michalski: “Learning and Generalization of Characteristic Descriptions—Evaluation Criteria and Comparative Review of Selected Methods”, Proc. 6th Int. Joint Conf. on Artif. Intell., Tokyo, Jpn. 1979, pp. 223–231

    Google Scholar 

  105. P.H. Winston: “Learning Structural Descriptions from Examples”, in The Psychology of Computer Vision, ed. by P.H. Winston (McGraw-Hill, New York 1975) pp. 157–209

    Google Scholar 

  106. T.M. Mitchell: “An Analysis of Generalization as a Search Problem”, Proc. 6th Int. Joint Conf. on Artif. Intell., Tokyo, Jpn. 1979, pp. 577–582

    Google Scholar 

  107. B.G. Buchanan, T.M. Mitchell: “Model-Directed Learning of Production Rules”, in Ref. 1.22, pp. 297–312

    Google Scholar 

  108. T.G. Evans: “Grammatical Inference Techniques in Pattern Analysis”, in Software Engineering COINS III Vol.2, ed. by J.T. Tou (Academic, New York 1971) pp. 183–202

    Google Scholar 

  109. S.A. Vere: “Inductive Learning of Relational Productions”, in Ref. 1.22, pp. 281–295

    Google Scholar 

  110. K.S. Fu, T.L. Booth: Grammatical inference—introduction and survey. IEEE Trans. SMC-5, 95–111 and 409-423 (1975)

    MathSciNet  MATH  Google Scholar 

  111. F. Hayes-Roth, J. McDermott: An interference matching technique for inducing abstractions. Commun. ACM 2l, 401–411 (1978)

    Article  Google Scholar 

  112. C.L. Hedrick: Learning production systems from examples. Artif. Intell. 7, 21–49 (1976)

    Article  Google Scholar 

  113. R.G. Smith, T.M. Mitchell, R.A. Chestek, B.G. Buchanan: “A Model For Learning Systems”, Proc. 5th Int. Joint Conf. on Artif. Intell., Cambridge, MA 1977, pp. 338–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niemann, H. (1981). Knowledge Representation, Utilization, and Acquisition. In: Pattern Analysis. Springer Series in Information Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96650-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96650-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96652-1

  • Online ISBN: 978-3-642-96650-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics