Synergetics pp 225-262 | Cite as

# Physical Systems

## Abstract

The laser is nowadays one of the best understood many-body problems. It is a system far from thermal equilibrium and it allows us to study cooperative effects in great detail. We take as an example the solid-state laser which consists of a set of laser-active atoms embedded in a solid state matrix (cf. Fig. 1.9). As usual, we assume that the laser end faces act as mirrors serving two purposes: They select modes in axial direction and with discrete cavity frequencies. In our model we shall treat atoms with two energy levels. In thermal equilibrium the levels are occupied according to the Boltzmann distribution function. By exciting the atoms, we create an inverted population which may be described by a negative temperature. The excited atoms now start to emit light which is eventually absorbed by the surroundings, whose temperature is much smaller than *ℏ* *ω/k* _{ B } (where *ω* is the light frequency of the atomic transition and *k* _{ B } is Boltzmann’s constant) so that we may put this temperature ≈ 0. From a thermodynamic point of view the laser is a system (composed of the atoms and the field) which is coupled to reservoirs at different temperatures. Thus the laser is a system far from thermal equilibrium.

## Keywords

Rayleigh Number Electric Field Strength Saturable Absorber Ultrashort Laser Pulse Fluctuate Force## Preview

Unable to display preview. Download preview PDF.

## References

## For related topics see

- H. Haken: Rev. Mod. Phys.
**47**, 67 (1975) and the articles by various authors inMathSciNetADSCrossRefGoogle Scholar - H. Haken, ed.:
*Synergetics*(Teubner, Stuttgart 1973)MATHGoogle Scholar - H. Haken, M. Wagner, eds.:
*Cooperative Phenomena*(Springer, Berlin-Heidelberg-New York 1973)MATHGoogle Scholar - H. Haken, ed.:
*Cooperative Effects*(North Holland, Amsterdam 1974)Google Scholar

## Cooperative Effects in the Laser: Self-Organization and Phase Transition

- H. Haken: Z. Phys.
**181**, 96 (1964) The dramatic change of the statistical properties of laser light at laser threshold was first derived and predicted byADSCrossRefGoogle Scholar

## The Laser Equations in the Mode Picture

- H. Haken: In
*Encyclopedia of Physics*, Vol. XXV/2c: Laser Theory (Springer, Berlin-Heidelberg-New York 1970) For a detailed review on laser theory seeGoogle Scholar

## The Order Parameter Concept

- H. Haken: Rev. Mod. Phys.
**47**, 67 (1975) Compare especiallyMathSciNetADSCrossRefGoogle Scholar

## The Single Mode Laser

- The laser distribution function was derived by H. Risken: Z. Phys.
**186**, 85 (1965) andADSCrossRefGoogle Scholar - R. D. Hempstead, M. Lax: Phys. Rev.
**161**, 350 (1967) Same references as of Sections 8.1–8.3. For a fully quantum mechanical distribution function cf.ADSCrossRefGoogle Scholar - W. Weidlich, H. Risken, H. Haken: Z. Phys.
**201**, 396 (1967)ADSCrossRefGoogle Scholar - M. Scully, W. E. Lamb: Phys. Rev.
**159**, 208 (1967);ADSCrossRefGoogle Scholar - M. Scully, W. E. Lamb: Phys. Rev.
**166**, 246 (1968)ADSCrossRefGoogle Scholar

## The Multimode Laser

- H. Haken: Z. Phys.
**219**, 246 (1969)ADSCrossRefGoogle Scholar

## Laser with Continuously Many Modes. Analogy with Superconductivity

- R. Graham, H. Haken: Z. Phys.
**237**, 31 (1970) For a somewhat different treatment seeMathSciNetADSCrossRefGoogle Scholar

## First-Order Phase Transitions of the Single Mode Laser

- J. F. Scott, M. Sargent III, C. D. Cantrell: Opt. Commun.
**15**, 13 (1975)ADSCrossRefGoogle Scholar - W. W. Chow, M. O. Scully, E. W. van Stryland: Opt. Commun.
**15**, 6 (1975)ADSCrossRefGoogle Scholar

## Hierarchy of Laser Instabilities and Ultrashort Laser Pulses

- H. Haken, H. Ohno: Opt. Commun.
**16**, 205 (1976) We follow essentiallyADSCrossRefGoogle Scholar - H. Ohno, H. Haken: Phys. Lett.
**59A**, 261 (1976), and unpublished work For a machine calculation seeADSGoogle Scholar - H. Risken, K. Nummedal: Phys. Lett.
**26A**, 275 (1968);ADSGoogle Scholar - H. Risken, K. Nummedal J. appl. Phys.
**39**, 4662 (1968) For a discussion of that instability see alsoADSCrossRefGoogle Scholar - R. Graham, H. Haken: Z. Phys.
**213**, 420 (1968) For temporal oscillations of a single mode laser cf.ADSCrossRefGoogle Scholar - K. Tomita, T. Todani, H. Kidachi: Phys. Lett.
**51A**, 483 (1975)ADSGoogle Scholar

## Instabilities in Fluid Dynamics: The Bénard and Taylor Problems 8.10 The Basic Equations 8.11 Damped and Neutral Solutions (R = Rc)

- L. D. Landau, E. M. Lifshitz: In
*Course of Theoretical Physics*, Vol. 6: Fluid Mechanics (Pergamon Press, London-New York-Paris-Los Angeles 1959) Some monographs in hydrodynamics:Google Scholar - Chia-Shun-Yih:
*Fluid Mechanics*(McGraw Hill, New York 1969)Google Scholar - G. K. Batchelor:
*An Introduction to Fluid Dynamics*(University Press, Cambridge 1970)Google Scholar - S. Chandrasekhar:
*Hydrodynamic and Hydromagnetic Stability*(Clarendon Press, Oxford 1961)MATHGoogle Scholar

## Solution Near R = Rc (Nonlinear Domain). Effective Langer in Equations 8.13 The Fokker-Planck Equation and Its Stationary Solution

- Stability problems are treated particularly by Chandrasekhar l.c. and by C. C. Lin:
*Hydrodynamic Stability*(University Press, Cambridge 1967)Google Scholar - H. Haken: Phys. Lett.
**46A**, 193 (1973) and in particular Rev. Mod. Phys. 47, 67 (1976) We follow essentiallyGoogle Scholar - R. Graham: Phys. Rev. Lett.
**31**, 1479 (1973);ADSCrossRefGoogle Scholar - R. Graham Phys. Rev.
**10**, 1762 (1974) For related work seeADSGoogle Scholar - A. Wunderlin: Thesis, Stuttgart University (1975) For the analysis of mode-configurations, but without fluctuations, cf.Google Scholar
- A. Schlüter, D. Lortz, F. Busse: J. Fluid Mech.
**23**, 129 (1965)MathSciNetADSMATHCrossRefGoogle Scholar - F. H. Busse: J. Fluid Mech.
**30**, 625 (1967)ADSMATHCrossRefGoogle Scholar - A. C. Newell, J. A. Whitehead: J. Fluid Mech.
**38**, 279 (1969)ADSMATHCrossRefGoogle Scholar - R. C. Diprima, H. Eckhaus, L. A. Segel: J. Fluid Mech.
**49**, 705 (1971) Higher instabilities are discussed byADSMATHCrossRefGoogle Scholar - F. H. Busse: J. Fluid Mech.
**52**, 1, 97 (1972)ADSMATHCrossRefGoogle Scholar - D. Ruelle, F. Takens: Comm. Math. Phys.
**20**, 167 (1971)MathSciNetADSMATHCrossRefGoogle Scholar - J. B. McLaughlin, P. C. Martin: Phys. Rev.
**A 12**, 186 (1975) where further references may be found. A review on the present status of experiments and theory gives the bookADSCrossRefGoogle Scholar *Fluctuations, Instabilities and Phase Transitions*, ed. by T. Riste (Plenum Press, New York 1975)Google Scholar

## A Model for the Statistical Dynamics of the Gunn Instability Near Threshold

- J. B. Gunn: Solid State Commun.
**1**, 88 (1963)ADSCrossRefGoogle Scholar - J. B. Gunn: IBM J. Res. Develop.
**8**, 141 (1964) For a theoretical discussion of this and related effects see for instanceCrossRefGoogle Scholar - H. Thomas: In
*Synergetics*, ed. by H. Haken (Teubner, Stuttgart 1973) Here, we follow essentiallyGoogle Scholar - K. Nakamura: J. Phys. Soc. Jap.
**38**, 46 (1975)ADSCrossRefGoogle Scholar

## Elastic Stability: Outline of Some Basic Ideas

- J. M. T. Thompson, G. W. Hunt:
*A General Theory of Elastic Stability*(Wiley, London 1973) Introductions to this field giveMATHGoogle Scholar - K. Huseyin:
*Nonlinear Theory of Elastic Stability*(Nordhoff, Leyden 1975)MATHGoogle Scholar