Skip to main content

Information

How to Be Unbiased

  • Chapter
Synergetics

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 1))

Abstract

In this chapter we want to show how, by some sort of new interpretation of probability theory, we get an insight into a seemingly quite different discipline, namely information theory. Consider again the sequence of tossing a coin with outcomes 0 and 1. Now interpret 0 and 1 as a dash and dot of a Morse alphabet. We all know that by means of a Morse alphabet we can transmit messages so that we may ascribe a certain meaning to a certain sequence of symbols. Or, in other words, a certain sequence of symbols carries information. In information theory we try to find a measure for the amount of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Some Basic Ideas

  • Monographs on this subject are: L. Brillouin: Science and Information Theory (Academic Press, New York-London 1962)

    MATH  Google Scholar 

  • L. Brillouin: Scientific Uncertainty and Information (Academic Press, New York-London 1964)

    MATH  Google Scholar 

  • Information theory was founded by C. E. Shannon: A mathematical theory of communication. Bell System Techn. J. 27, 370–423, (1948)

    MathSciNet  Google Scholar 

  • C. E. Shannon: A mathematical theory of communication. Bell System Techn. J. 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  • C. E. Shannon: Bell System Techn. J. 30, 50 (1951)

    MATH  Google Scholar 

  • C. E. Shannon, W. Weaver: The Mathematical Theory of Communication (Univ. of Illin. Press, Urbana 1949)

    MATH  Google Scholar 

  • Some conceptions, related to information and information gain (H-theorem!) were introduced by L. Boltzmann: Vorlesungen über Gastheorie, 2 Vols. (Leipzig 1896, 1898)

    Google Scholar 

Information Gain: An Illustrative Derivation

Here we follow our lecture notes. 3.3 Information Entropy and Constraints

An Example from Physics: Thermodynamics

  • The approach of this chapter is conceptually based on Jaynes’ papers, I.c. Section 3.3. For textbooks giving other approaches to thermodynamics see Landau-Lifshitz: In Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon Press, London-Paris 1952)

    Google Scholar 

  • R. Becker: Theory of Heat (Springer, Berlin-Heidelberg-New York 1967)

    Google Scholar 

  • A. Münster: Statistical Thermodynamics, Vol. 1 (Springer, Berlin-Heidelberg-New York 1969)

    MATH  Google Scholar 

  • H. B. Callen: Thermodynamics (Wiley, New York 1960)

    MATH  Google Scholar 

  • P. T. Landsberg: Thermodynamics (Wiley, New York 1961)

    MATH  Google Scholar 

  • R. Kubo: Thermodynamics (North Holland, Amsterdam 1968)

    Google Scholar 

  • W. Brenig: Statistische Theorie der Wärme (Springer, Berlin-Heidelberg-New York 1975)

    Google Scholar 

  • W. Weidlich: Thermodynamik und statistische Mechanik (Akademische Verlagsgesellschaft, Wiesbaden 1976)

    Google Scholar 

An Approach to Irreversible Thermodynamics

  • An interesting and promising link between irreversible thermodynamics and network theory has been established by A. Katchalsky, P. F. Curran: Nonequilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge Mass. 1967)

    Google Scholar 

  • For a recent representation including also more current results see J. Schnakenberg: Thermodynamic Network Analysis of Biological Systems, Universitext (Springer, Berlin-Heidelberg-New York 1977)

    Book  MATH  Google Scholar 

  • For detailed texts on irreversible thermodynamics see I. Prigogine: Introduction to Thermodynamics of Irreversible Processes (Thomas, New York 1955)

    Google Scholar 

  • I. Prigogine: Non-equilibrium Statistical Mechanics (Interscience, New York 1962)

    MATH  Google Scholar 

  • S. R. De Groot, P. Mazur: Non-equilibrium Thermodynamics (North Holland, Amsterdam 1962)

    Google Scholar 

  • R. Haase: Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, Mass. 1969)

    Google Scholar 

  • D. N. Zubarev: Non-equilibrium Statistical Thermodynamics (Consultants Bureau, New York-London 1974)

    Google Scholar 

Here, we present a hitherto unpublished treatment by the present author. 3.6 Entropy—Curse of Statistical Mechanics?

  • For the problem subjectivistic-objectivistic see for example E. T. Jaynes: Information Theory. In Statistical Physics, Brandeis Lectures, Vol. 3 (W. A. Benjamin, New York 1962)

    Google Scholar 

  • Coarse graining is discussed by A. Münster: In Encyclopedia of Physics, ed. by S. Flügge, Vol. III/2: Principles of Thermodynamics and Statistics (Springer, Berlin-Göttingen-Heidelberg 1959) The concept of entropy is discussed in all textbooks on thermodynamics, cf. references to Section 3.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haken, H. (1978). Information. In: Synergetics. Springer Series in Synergetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96469-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96469-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96471-8

  • Online ISBN: 978-3-642-96469-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics