Synergetics pp 319-332 | Cite as


  • Hermann Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 1)


Sometimes scientists like to use dramatic words of ordinary language in their science and to attribute to them a technical meaning. We already saw an example in Thorn’s theory of “catastrophes”. In this chapter we become acquainted with the term “chaos”. The word in its technical sense refers to irregular motion. In previous chapters we encountered numerous examples for regular motions, for instance an entirely periodic oscillation, or the regular occurrence of spikes with well-defined time intervals. On the other hand, in the chapters about Brownian motion and random processes we treated examples where an irregular motion occurs due to random, i.e., in principle unpredictable, causes. Surprisingly the irregular motion represented in Fig. 12.1 stems from completely deterministic equations. To
Fig. 12.1

Example of chaotic motion of a variable q (versus time)

characterize this new phenomenon, we define chaos as irregular motion stemming from deterministic equations. The reader should be warned that somewhat different definitions of chaos and the criteria to check its occurrence are available in the literature. The difficulty rests mainly in the problem of how to define “irregular motion“properly. For instance, the superposition of motions with different frequencies could mimic to some extent an irregular behavior and one wants to preclude such a case from representing chaos. We shall come back to this question in Section 12.5, where we shall discuss the typical behavior of the correlation function of chaotic processes. A good deal of present-day analysis of “chaos” rests on computer calculations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chaos 12.1 What Is Chaos?

  1. S. Smale: Bull. A.M.S. 73, 747 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  2. T. Y. Li, J. A. Yorke: Am. Math. Monthly 82, 985 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  3. D. Ruelle, F. Takens: Commun. math. Phys. 20, 167 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar

The Lorenz Model. Motivation and Realization

  1. E. N. Lorenz: J. Atmospheric Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  2. E. N. Lorenz: J. Atmospheric Sci. 20, 448 (1963)ADSCrossRefGoogle Scholar
  3. J. B. McLaughlin, P. C. Martin: Phys. Rev. A12, 186 (1975)ADSGoogle Scholar
  4. M. Lücke: J. Stat. Phys. 15, 455 (1976)ADSCrossRefGoogle Scholar
  5. H. Haken: Phys. Lett. 53A, 77 (1975)ADSGoogle Scholar

How Chaos Occurs

  1. H. Haken, A. Wunderlin: Phys. Lett. 62A, 133 (1977)MathSciNetADSGoogle Scholar

Chaos and the Failure of the Slaving Principle

  1. H. Haken, J. Zorell: UnpublishedGoogle Scholar

Correlation Function and Frequency Distribution

  1. M. Lücke: J. Stat. Phys. 15, 455 (1976)ADSCrossRefGoogle Scholar
  2. Y. Aizawa, I. Shimada: Preprint 1977Google Scholar

Further Examples of Chaotic Motion

  1. Three-Body Problem:Google Scholar
  2. H. Poincaré: Les méthodes nouvelles de la méchanique céleste. Gauthier-Villars, Paris (1892/99), Reprint (Dover Publ., New York 1960)Google Scholar
  3. A. A. Andronov, A. A. Vitt, S. E. Khaikin: Theory of Oscillators (Pergamon Press, Oxford-London-Edinburgh-New York-Toronto-Paris-Frankfurt 1966)zbMATHGoogle Scholar
  4. Gunn Oscillator:Google Scholar
  5. K. Nakamura: Progr. Theoret. Phys. 57, 1874 (1977)ADSCrossRefGoogle Scholar
  6. O. E. Roessler. For a summary and list of references consultGoogle Scholar
  7. O. E. Roessler: In Synergetics, A Workshop, ed. by H. Haken (Springer, Berlin-Heidelberg-New York, 1977)Google Scholar
  8. Y. Kuramoto, T. Yamada: Progr. Theoret. Phys. 56, 679 (1976)MathSciNetADSCrossRefGoogle Scholar
  9. T. Yamada, Y. Kuramoto: Progr. Theoret. Phys. 56, 681 (1976)MathSciNetADSCrossRefGoogle Scholar
  10. K. Tomita, T. Kai, F. Hikami: Progr. Theoret. Phys. 57, 1159 (1977)ADSCrossRefGoogle Scholar
  11. R. A. Schmitz, K. R. Graziani, J. L. Hudson: J. Chem. Phys. 67, 3040 (1977); O. E. Roessler, to be publishedADSCrossRefGoogle Scholar
  12. J. A. Jacobs: Phys. Reports 26, 183 (1976) with further referencesADSCrossRefGoogle Scholar
  13. R.M. May: Nature 261, 459 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations