Skip to main content

Cell Movement

  • Chapter
Microtubules

Abstract

Intimate relations exist between cellular locomotion, intracellular displacements of various organelles, and MT. The role of MT in the movements of cilia is evident, and their association with the displacements of chromosomes at mitosis has been at the origin of some of the most important contributions on MT. However, when this complex subject is approached more closely, the relations of MT and motion appear more complex and often indirect. The study of the mechanics of ciliary bending provides one of the best examples of the role of other proteins, establishing connections between MT, in the dynamic changes of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzelius, B. A., Eliasson, R., Johnsen, O., Lindholmer, C.: Lack of dynein arms in immotile human spermatozoa. J. Cell Biol. 66, 225–232 (1975)

    Article  PubMed  CAS  Google Scholar 

  2. Allen, C, Borisy, G. G.: Flagellar motihty in Chlamydomonas: reactivation and sliding in vitro. J. Cell Biol. 63, 5 a (1974)

    Google Scholar 

  3. Allen, R. D., Kamiya, N. (eds.): Primitive Motile Systems in Cell Biology. New York-London: Acad. Press 1964

    Google Scholar 

  4. Bairati, A.: Comparative ultrastructure of ectoderm-derived filaments. Boll. Zool. 39, 283–308 (1972)

    Article  Google Scholar 

  5. Baker, P. C., Schroeder, T. E.: Cytoplasmic filaments and morphogenetic movements in the amphibian neural tube. Dev. Biol. 15, 432–450 (1967)

    Article  PubMed  CAS  Google Scholar 

  6. Bardele, C. F.: Cell cycle, morphogenesis, and ultrastructure in the pseudoheliozoan Clathrulina elegans. Z. Zellforsch. 130, 219–242 (1972)

    Article  PubMed  CAS  Google Scholar 

  7. Bardele, C. F.: Transport of materials in the suctorian tentacle. Symp. Soc. Exp. Biol. 27, 191–208 (1974)

    Google Scholar 

  8. Bardele, C. F., Grell, K. G.: Elektronmikroskopische Beobachtungen zur Nahrungsaufnahme bei dem Suktor Acineta tuberosa Ehrenberg. Z. Zellforsch. 80, 108–123 (1967)

    Article  PubMed  CAS  Google Scholar 

  9. Behnke, O., Kristensen, B. I., Weilsen, L. E.: Electron microscopical observations on the actinoid and myosinoid filaments in blood platelets. J. Ultrastruct. Res. 37, 351–369 (1971)

    Article  PubMed  CAS  Google Scholar 

  10. Bhisey, A. N., Freed, J. J.: Ameboid movement induced in cultured macrophages by colchicine or vinblastine. Exp. Cell Res. 64, 419–429 (1971)

    Article  PubMed  CAS  Google Scholar 

  11. Bickle, D., Tilney, L. G., Porter, K. R.: Microtubules and pigment migration in the melanophores of Fundulus heteroclitus L. Protoplasma 61, 322–345 (1966)

    Article  Google Scholar 

  12. Bitensky, M. W., Keirns, C. N., Keirns, J. J.: The amphibian melanocyte: microtubules, cyclic AMP, and organelle translocation. Ann. N. Y. Acad. Sci. 253, 685–691 (1975)

    Article  PubMed  CAS  Google Scholar 

  13. Bloodgood, R. A.: Biochemical basis of axostyle motihty. Cytobios 14, 101–120 (1975)

    CAS  Google Scholar 

  14. Bloodgood, R. A., Miller, K. R.: Freeze-fracture of microtubules and bridges in motile axostyles. J. Cell Biol. 62, 660–671 (1974)

    Article  PubMed  CAS  Google Scholar 

  15. Borgers, M., De Brabander, M. (eds.): Microtubules and Microtubule Inhibitors. Amsterdam-Oxford: North-Holland; New York: Am. Elsevier 1975

    Google Scholar 

  16. Brokaw, C. J.: Cross-bridge behaviour in a sliding filament model for flagella. In: Molecules and Cell Movement (eds.: S. Inoué, E. E. Stephens), pp. 165–180. New York: Raven Press; Amsterdam: North-Holland 1975

    Google Scholar 

  17. Buckley, I. K., Porter, K. R.: Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma 64, 349–380 (1967)

    Article  PubMed  CAS  Google Scholar 

  18. Burnside, M. B.: Possible roles of microtubules and actin filaments in retinal pigmented epithelium. Exp. Eye Res. 23, 257–275 (1976)

    Article  PubMed  CAS  Google Scholar 

  19. Burnside, B.: Microtubules and actin filaments in teleost visual cone elongation and contraction. J. Supramol. Struct. 5, 257–275 (1976)

    Article  PubMed  CAS  Google Scholar 

  20. Cachon, J., Cachon, M.: Rôle des microtubules dans les courants cytoplasmiques des axopodes. C. R. Acad. Sci. (Paris) D 280, 2341–2344 (1975)

    Google Scholar 

  21. Cachon, J., Cachon, M., Tilney, L. G., Tilney, M. S.: Movement generated by interactions between the dense material at the ends of microtubules and non-actin-containing microfilaments in Sticholonche zanclea. J. Cell Biol. 72, 314–338 (1977)

    Article  PubMed  CAS  Google Scholar 

  22. Carr, I.: The fine structure of microfibrils and microtubules in macrophages and other lymphoreticular cells in relation to cytoplasmic movement. J. Anat. 112, 383–390 (1972)

    PubMed  CAS  Google Scholar 

  23. Carter, S. B.: Effects of cytochalasins on mammalian cells. Nature (London) 213, 261–264 (1967)

    Article  PubMed  CAS  Google Scholar 

  24. Castrucci, A. M. de L.: Chromatophores of the teleost Tilapia melanopleura. II. The effect of chemical mediators, microtubule-disrupting drugs and ouabain. Comp. Biochem. Physiol. 50, 457–462 (1975)

    Article  CAS  Google Scholar 

  25. Chang, C. M., Goldman, R. D.: The localization of aetin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding. J. Cell Biol. 57, 867–874 (1973)

    Article  PubMed  CAS  Google Scholar 

  26. Ciba Foundation Symposium 14. Locomotion of Tissue Cells. Amsterdam-London-New York: Elsevier, Excerpta Medica, North-Holland Associated Scientific Publishers 1973

    Google Scholar 

  27. Crispe, I. N.: The effect of vinblastine, colchicine and hexylene glycol on migration of human monocytes. Exp. Cell Res. 100, 443–446 (1976)

    Article  PubMed  CAS  Google Scholar 

  28. Curry, A., Butler, R. D.: The ultrastructure, function and morphogenesis of the tentacle in Discophrya sp. (Suctorida) cileatea. J. Ultrastruct. Res. 56, 164–176 (1976)

    Article  PubMed  CAS  Google Scholar 

  29. Dales, S., Chardonnet, Y.: Early events in the interaction of adenoviruses with HeLa cells. IV. Association with microtubules and the nuclear pore complex during vectorial movement of the inoculum. Virology 56, 465–483 (1973)

    Article  PubMed  CAS  Google Scholar 

  30. De Brabander, M.: Onderzoek naar de roi van microtubuli in gekweekte cellen met be-hulp van een nieuwe synthetische inhibitor van tubulin-polymerisatie. Thesis, Brussels 1977

    Google Scholar 

  31. De Brabander, M., Aerts, F., van de Veire, R., Borgers, M.: Evidence against interconversion of microtubules and filaments. Nature 253, 119–120 (1975)

    Article  Google Scholar 

  32. Dupraw, E.J.: The organization of honey bee embryonic cells. I. Microtubules and amoeboid activity. Dev. Biol. 12, 53–71 (1965)

    Article  PubMed  CAS  Google Scholar 

  33. Edds, K.: Particle movements in artificial axopodia of Echinosphaerium nucleofilum. J. Cell Biol. 59, 88 a (1973)

    Google Scholar 

  34. Fingerman, M., Fingerman, S. W., Lambert, D. T.: Colchicine, cytochalasin B, and pigment movements in ovarian and integumentary erythrophores of the prawn, Palaemonetes vulgaris. Biol. Bull. 149, 165–177 (1975)

    Article  CAS  Google Scholar 

  35. Fitzharris, T. P., Bloodgood, R. A., McIntosh, J. R.: The effect of fixation on the wave propagation of the protozoan axostyle. Tissue and Cell 4, 219–225 (1972)

    Article  PubMed  CAS  Google Scholar 

  36. Freed, J. J., Bhisey, A. N., Lebowitz, M. M.: The relation of microtubules and microfilamentsto the motility of cultured cells. J. Cell Biol. 39, 46 a (1968)

    Google Scholar 

  37. Freed, J. J., Lebowitz, M. M.: The association of a class of saltatory movements with microtubules in cultured cells. J. Cell Biol. 45, 334–354 (1970)

    Article  PubMed  CAS  Google Scholar 

  38. Gail, M.: Time lapse studies on the motility of fibroblasts in tissue culture. In: Locomotion of Tissue Cells. Ciba Foundation Symposium 14,’pp. 287–310. Amsterdam-London-New York:Elsevier, Excerpta Medica, North-Holland 1973

    Google Scholar 

  39. Gail, M. H., Boone, C. W.: Effect of colcemid on fibroblast motility. Exp. Cell Res. 65, 221–227 (1971)

    Article  PubMed  CAS  Google Scholar 

  40. Gallin, J. I., Rosenthal, A. S.: Regulatory role of divalent cations in human granulocyte chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly. J. Cell Biol. 62, 594–609 (1974)

    Article  PubMed  CAS  Google Scholar 

  41. Gibbons, I. R.: The relationship between the fine structure and direction of beat in the gill cilia of a lamellibranch mollusk. J. Biophys. Biochem. Cytol. 11, 179–205 (1961)

    Article  PubMed  CAS  Google Scholar 

  42. Gibbons, I. R.: The organization of cilia and flagella. In: Molecular Organization of Biological Function. (ed.: J. M. Allen), pp. 211–237. New York: Evanston; London: Harper and Row 1967

    Google Scholar 

  43. Gibbons, I. R.: Molecular basis of flagellar motility in sea urchin spermatozoa. In: Molecules and Cell Movement. (eds.: S. Inoué, R. E. Stephens) pp. 207–232, New York: Raven Press; Amsterdam: North-Holland 1975

    Google Scholar 

  44. Gibbons, B. H., Gibbons, I. R.: The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin spermatozoa. J. Cell Sci. 13, 337–358 (1973)

    PubMed  CAS  Google Scholar 

  45. Glenner, G. G., Page, D. L.: Amyloid, amyloidosis, and amyloidogenesis. Intern. Rev. Exp. Path. 15, 2–93 (1976)

    Google Scholar 

  46. Goldman, R. D., Berg, G., Bushneil, A., Cheng Ming Chang, Dickerman, L., Hopkins, N., Miller, M. L., Pollack, R., Wang, E.: Fibrillar systems in cell motility. In: Locomotion of Tissue Cells. Ciba Foundation Symposium 14, pp. 83–108. Amsterdam-London-New York: Elsevier, Excerpta Medica, North-Holland 1973

    Google Scholar 

  47. Goldman, R. D., Knipe, D. M.: Functions of cytoplasmic fibers in non-muscle cell motility. Cold Spring Harbor Symp. Quant. Biol. 27, 523–534 (1972)

    Google Scholar 

  48. Goldman, R., Pollard, T., Rosenbaum, J. (eds.): Cell Motility. Cold Spring Harbor Lab. 1976

    Google Scholar 

  49. Gonatas, N. K., Margolis, G., Kilham, L.: Reovirus type III encephalitis: observations of virus-cell interactions in neural tissues. II. Electron microscopic studies. Lab. Invest. 24, 101–109 (1971)

    PubMed  CAS  Google Scholar 

  50. Gordon, S., Cohn, Z.: Macrophage-melanocyte heterokaryons. I. Preparation and properties. J. Exp. Med. 131, 981–1003 (1970)

    Article  PubMed  CAS  Google Scholar 

  51. Green, L.: Mechanism of movements of granules in melanocytes of Fundulus heteroclitus. Proc. Natl. Acad. Sci. USA. 59, 1179–1186 (1968)

    Article  PubMed  CAS  Google Scholar 

  52. Grell, K. G.: Protozoology. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  53. Himes, R. H., Houston, L. L.: The action of cytochalasin A on the in vitro polymerization of brain tubulin and muscle G-actin. J. Supramol. Struct. 5, 81–90 (1976)

    Article  PubMed  CAS  Google Scholar 

  54. Hitchen, E. T., Butler, R. D.: Ultrastructural studies of the commensal suctorian, Choanophrya infuldibulifera Hartog. I. Tentacle structure, movement and feeding. Z. Zellforsch. 144, 37–57 (1973)

    Article  PubMed  CAS  Google Scholar 

  55. Hitchen, E. T., Butler, R. D.: The ultrastructure and function of the tentacle in Rhyncheta cyclopum Zenker (Ciliatea, Suctoria) J. Ultrastract. Res. 46, 279–295 (1974)

    Article  CAS  Google Scholar 

  56. Hollande, A., Cachon, J., Cachon, M., Valentin, J.: Infrastructure des axopodes et organisation générale de Sticholonche zanclea Hertwig (Radiolaire Sticholonchidae). Protistolo-gica 3, 155–166 (1967)

    Google Scholar 

  57. Holmes, K. V., Choppin, P. W.: On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J. Cell Biol. 39, 526–543 (1968)

    Article  PubMed  CAS  Google Scholar 

  58. Huang, B., Pitelka, D. R.: The contractile process in the ciliate Stentor coeruleus. I. The role of microtubules and filaments, J. Cell Biol. 57, 704–728 (1973)

    Article  PubMed  CAS  Google Scholar 

  59. Hyams, J., Borisy, G. G.: The isolation and reactivation of the flagellar apparatus of Chlamydomonas reinhardi. J. Cell Biol. 63, 150 a (1974)

    Google Scholar 

  60. Inoué, S., Stephens, R. E. (eds.): Molecules and Cell Movement. New York: Raven Press; Amsterdam: North-Holland 1975

    Google Scholar 

  61. Ishikawa, H., Bischoff, R., Holtzer, H.: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43, 312–328 (1969)

    Article  PubMed  CAS  Google Scholar 

  62. Jimbow, K., Pathak, M. A., Fitzpatrick, T. B.: Effect of ultraviolet on the distribution pattern of microfilaments and microtubules and on the nucleus in human melanocytes. Yale J. Biol. Med. 46, 411–426 (1973)

    PubMed  CAS  Google Scholar 

  63. Johnson, L. S., Sinex, F. M.: On the relationship of brain filaments to microtubules. J. Neurochem. 22, 321–326 (1974)

    Article  PubMed  CAS  Google Scholar 

  64. Komnick, H., Stockem, W., Wohlfarth-Botterman, K. E.: Cell motility: mechanisms in protoplasmic streaming and ameboid movement. Intern. Rev. Cytol. 34, 169–252 (1973)

    Article  Google Scholar 

  65. Lambert, D. T., Crowe, J. H.: Colchicine and cytochalasin B; effect on pigment granule translocation in melanophores of Uca pugilator (Crustacea; Decapoda). Comp. Biochem. Physiol. 46, 11–16 (1973)

    Article  CAS  Google Scholar 

  66. Lambert, D. T., Fingerman, M.: Evidence of a non-microtubular colchicine effect in pigment granule aggregation in melanophores of the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. C. 53, 25–28 (1976)

    Article  PubMed  CAS  Google Scholar 

  67. Langford, G. M., Inoué, S., Sabran, I.: Analysis of axostyle motility in Pyrsonympha vertens. J. Cell Biol. 59, 185 a (1973)

    Article  Google Scholar 

  68. Lazarides, E., Lindberg, U.: Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc. Natl. Acad. Sci. U.S.A. 71, 4742–4746 (1974)

    Article  PubMed  CAS  Google Scholar 

  69. Lebeux, Y. J., Willemot, J.: An ultrastructural study of the microfilaments in rat brains by means of heavy meromyosin labelling. I. The perikaryon, the dendrites and the axon. II. The synapses. Cell Tiss. Res. 160, 1–36; 37–68 (1975)

    CAS  Google Scholar 

  70. Lindemann, C. B., Gibbons, I. R.: Adenosine triphosphate-induced motility and sliding of filaments in mammalian sperm extracted with triton X-100. J. Cell Biol. 65, 147–162 (1975)

    Article  PubMed  CAS  Google Scholar 

  71. Luftig, R. B., Weihing, R. R.: Adenovirus binds to rat brain microtubules in vitro. J. Virol. 16, 696–706 (1975)

    PubMed  CAS  Google Scholar 

  72. McGuire, J., Moelimann, G., McKeon, F.: Cytochalasin B and pigment granule translocation. Cytochalasin B reverses and prevents pigment granule dispersion caused by dibutyryl cyclic AMP and theophylline in Rana pipiens melanocytes. J. Cell Biol. 52, 754–758 (1972)

    Article  PubMed  CAS  Google Scholar 

  73. McIntosh, J. R., Ogata, E. S., Landis, S. C.: The axostyle of Saccinobaculus. I. Structure of the organism and its microtubule bundle. J. Cell Biol. 56, 304–323 (1973)

    Article  PubMed  CAS  Google Scholar 

  74. McIntosh, J. R., Hepler, R. K., Wie, D. G. van: Model for mitosis. Nature 224, 659–663 (1969)

    Article  Google Scholar 

  75. Macgregor, H. C., Stebbings, H.: A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J. Cell Sci. 6, 431–449 (1970)

    PubMed  CAS  Google Scholar 

  76. Magun, B.: Two actions of cyclic MAP on melanosome movement in frog skin. Dissection by cytochalasin B. J. Cell Biol. 57, 845–858 (1973)

    Article  CAS  Google Scholar 

  77. Malawista, S. E.: On the action of colchicine. The melanocyte model. J. Exp. Med. 122, 361–384 (1965)

    Article  PubMed  CAS  Google Scholar 

  78. Malawista, S. E.: The melanocyte model. Colchicine-like effects of other antimitotic agents. J. Cell Biol. 49, 848–855 (1971)

    Article  PubMed  CAS  Google Scholar 

  79. Malawista, S. E., Asterita, H., Marsland, D.: Potentiation of the colchicine effect on frog melanocytes by high hydrostatic pressure. J. Cell. Physiol. 68, 13–17 (1966)

    Article  PubMed  CAS  Google Scholar 

  80. Moellmann, G., McGuire, J., Lerner, A. B.: Intracellular dynamics and the fine structure of melanocytes. With special reference to the effects of MSH and cyclic AMP on microtubules and 10-nm filaments. Yale J. Biol. Med. 46, 337–360 (1973)

    CAS  Google Scholar 

  81. Moellmann, G., McGuire, J.: Correlation of cytoplasmic microtubules and 10-nm filaments with the movement of pigment granules in cutaneous melanocytes of Rana pipiens. Ann. N. Y. Acad. Sci. 253, 711–722 (1975)

    Article  PubMed  CAS  Google Scholar 

  82. Mohri, H.: The function of tubulin in motile systems. Bioch. Biophys. Acta 456, 85–127 (1976)

    CAS  Google Scholar 

  83. Mooseker, M. S., Tilney, L. G.: Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J. Cell Biol. 56, 13–26 (1973)

    Article  PubMed  CAS  Google Scholar 

  84. Murphy, D. B.: The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores. Ann. N. Y. Acad. Sci. 253, 692–701 (1975)

    Article  PubMed  CAS  Google Scholar 

  85. Murphy, D. B., Tilney, L. G.: The role of microtubules in the movement of pigment granules m teleost melanophores. J. Cell Biol. 61, 757–779 (1974)

    Article  PubMed  CAS  Google Scholar 

  86. Nagai, R., Rebhun, L. I.: Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14, 571–589 (1966)

    Article  PubMed  CAS  Google Scholar 

  87. Novales, R. R., Fujii, R.: A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores. J. Cell. Physiol. 75, 133–135 (1970)

    Article  PubMed  CAS  Google Scholar 

  88. Ockleford, C. D., Tucker, J. B.: Growth, breakdown, repair, and rapid contraction of microtubular axopodia in the heliozoan Actinophrys sol. J. Ultrastruct. Res. 44, 369–387 (1973)

    Article  PubMed  CAS  Google Scholar 

  89. Pollard, T. D.: Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. In: Molecules and Cell Movement (eds.: S. Inoué, R. E. Stephens) pp. 259–286. New York: Raven Press 1975

    Google Scholar 

  90. Porter, K. R.: Microtubules in intracellular locomotion. In: Locomotion of Tissue Cells. Ciba Foundation Symposium 14, pp. 149–170. Amsterdam-London-New York: Elsevier, Excerpta Medica, north-Holland 1973

    Chapter  Google Scholar 

  91. Porter, K. R.: Motility in cells. In: Cell Motility (eds.: R. Goldman, T. Pollard, J. Rosenbaum), pp. 1 –23. Cold Spring Harbor Lab. 1976

    Google Scholar 

  92. Rebhun, L. I.: Saltatory particle movements and their relation to the mitotic apparatus. In: The Cell in Mitosis (ed.: L. Levine), pp. 67–106. New York: Acad. Press 1963

    Google Scholar 

  93. Rebhun, L. I.: Saltatory particle movements in cells. In: Primitive Motile Systems in Cell Biology (eds.: R. D. Allen, N. Kamiya), pp. 503–525. New York-London: Acad. Press 1964

    Google Scholar 

  94. Rebhun, L. I.: Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Intern. Rev. Cytol. 32, 93–139 (1972)

    Article  CAS  Google Scholar 

  95. Robison, W. G.: Microtubules in relation to the motility of a sperm syncytium in an armored scale insect. J. Cell Biol. 29, 251–265 (1966)

    Article  PubMed  Google Scholar 

  96. Robison, W. G.: Microtubular patterns in spermatozoa of coccid insects in relation to bending. J. Cell Biol. 52, 66–83 (1972)

    Article  PubMed  Google Scholar 

  97. Robison, W. G., Charlton, J. S.: Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Cristacea) J. Exp. Zool. 186, 279–304 (1973)

    Article  Google Scholar 

  98. Rudzinska, M. A.: The fine structure and function of the tentacle in Tokophyra infusionum. J. Cell Biol. 25, 459–477 (1965)

    Article  PubMed  CAS  Google Scholar 

  99. Saavedra, S., Renaud, F.: Studies on reactivated cilia. I. The utilization of various nucleoside triphosphates during ciliary movement. Exp. Cell Res. 90, 439–442 (1975)

    Article  PubMed  CAS  Google Scholar 

  100. Satir, P.: Structure and function of cilia and flagella. Protoplasmatologia 3, 1–52 (1965)

    Google Scholar 

  101. Satir, P.: Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of filaments in motility. J. Cell Biol. 26, 805–834 (1965)

    Article  PubMed  CAS  Google Scholar 

  102. Satir, P.: Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J. Cell Biol. 39, 77–94 (1968)

    Article  PubMed  CAS  Google Scholar 

  103. Satir, P.: The present status of the sliding microtubule model of ciliary motion. In: Cilia and Flagella (ed.: M. A. Sleigh) London and New York: Acad. Press 1974

    Google Scholar 

  104. Schliwa, M.: Microtubule distribution and melanosome movements in fish melanophores. In: Microtubules and Microtubule Inhibitors. (eds.: M. Borgers, M. De Brabander) pp. 215–228. Amsterdam-Oxford: North-Holland 1975

    Google Scholar 

  105. Schliwa, M., Bereiter-Hahn, J.: Pigment movements in fish melanophores: morphological and physiological studies. II. Cell shape and microtubules. Z. Zellforsch. 147, 107–125 (1973)

    Article  PubMed  CAS  Google Scholar 

  106. Schliwa, M., Bereiter-Hahn, J.: Pigment movements in fish melanophores: morphological and physiological studies. III. The effects of colchicine and vinblastine. Z. Zellforsch. 147, 127–148 (1973)

    Article  PubMed  CAS  Google Scholar 

  107. Schliwa, M., Bereiter-Hahn, J.: Pigment movements in fish melanophores: morphological and physiological studies. IV. The effect of cyclic adenosine monophosphate on normal and vinblastine treated melanophores. Cell Tissue Res. 151, 423–432 (1974)

    Article  PubMed  CAS  Google Scholar 

  108. Schliwa, M., Bereiter-Hahn, J.: Pigment movements in fish melanophores: morphological and physiological studies. V. Evidence for a microtubule-independent contractile system. Cell Tissue Res. 158, 61–74 (1975)

    Article  PubMed  CAS  Google Scholar 

  109. Schrével, J., Besse, C.: Un type flagellaire fonctionnel de base 6 + 0 J. Cell Biol. 66, 492–507 (1975)

    Article  Google Scholar 

  110. Schroeder, T. E.: The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z. Zellforsch. 109, 431–449 (1970)

    Article  PubMed  CAS  Google Scholar 

  111. Schroeder, T. E.: Dynamics of the contractile ring. In: Molecules and Cell Movement (eds.: S. Inoué, R. E. Stephens) pp. 305–334. New York: Raven Press; Amsterdam: North-Holland 1975

    Google Scholar 

  112. Sleigh, M. A. (ed.): Cilia and Flagella. London-New York: Acad. Press 1974

    Google Scholar 

  113. Soifer, D., (ed.): The Biology of Cytoplasmic Microtubules. Ann. N. Y. Acad. Sci. 253, (1975)

    Google Scholar 

  114. Spooner, B. S., Yamada, K. M., Wessells, N. K.: Microfilaments and cell locomotion. J. Cell Biol. 49, 595–613 (1971)

    Article  PubMed  CAS  Google Scholar 

  115. Stebbings, H., Bennett, C. E.: The sleeve element of microtubules. In: Microtubules and Microtubule Inhibitors (eds.: M. Borgers, M. De Brabander), pp. 35–45. Amsterdam-Oxford: North-Holland; New York: Elsevier 1975

    Google Scholar 

  116. Summers, K.: ATP-induced sliding of microtubules in bull sperm flagella. J. Cell Biol. 60, 321–324 (1974)

    Article  PubMed  CAS  Google Scholar 

  117. Tilney, L. G.: Nonfilamentous aggregates of actin and their association with membranes. In: Cell Motility (eds.: R. Goldman, T. Pollard, J. Rosenbaum), pp. 513–528. Cold Spring Harbor Lab. 1976

    Google Scholar 

  118. Tilney, L. G., Detmers, P.: Actin in erythrocyte ghosts and its association with spectrin. Evidence for a non-filamentous form of these two molecules in situ. J. Cell Biol. 66, 508–520 (1975)

    Article  PubMed  CAS  Google Scholar 

  119. Tucker, J. B.: Microtubule arms and cytoplasmic streaming and microtubule bending and stretching of intertubule links in the feeding tentacle of the suctorian ciliate Tokophyra. J. Cell Biol. 62, 424–437 (1974)

    Article  PubMed  CAS  Google Scholar 

  120. Tucker, J. B., Mackie, J. B.: Configurational changes in helical microtubule frameworks in feeding tentacles of the suctorian ciliate Tokophyra. Tissue and Cell 7, 601–612 (1975)

    Article  PubMed  CAS  Google Scholar 

  121. Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Ivanova, O. Y., Komm, S. G., Olshevskaja, L. V.: Effect of colcemid on the locomotory behaviour of fibroblasts. J. Embryol. Exp. Morph. 24, 625–640 (1970)

    PubMed  CAS  Google Scholar 

  122. Warner, F. D.: Cross-bridge mechanisms in ciliary motility: the sliding — bending conversion. In: Cell Motihty (eds.: R. Goldman, T. Pollard, J. Rosenbaum) pp. 891 –914.Cold Spring Harbor Lab. 1976

    Google Scholar 

  123. Warner, F. D., Satir, P.: The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J. Cell Biol. 63, 35–63 (1974)

    Article  PubMed  CAS  Google Scholar 

  124. Weber, K.: Visualization of tubulin-containing structures by immunofluorescence microscopy: cytoplasmic microtubules, mitotic figures and vinblastine-induced paracrystals. In: Cell Motifity (eds.: R. Goldman, T. Pollard, J. Rosenbaum), pp. 403–418. Cold Spring Harbor Lab. 1976

    Google Scholar 

  125. Wikswo, M. A., Novales, R. R.: Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J. Ultrastruct. Res. 41, 189–201 (1972)

    Article  PubMed  CAS  Google Scholar 

  126. Wisniewski, H., Terry, R. D.: An experimental approach to the morphogenesis of neurofibrillary degeneration and the argyrophilic plaque. In: Alzheimer’s disease and related conditions (eds.: G. E. Wolstenholme, M. O’Connor), pp. 223–240. Ciba Foundation Symposium. London: Churchill 1970

    Google Scholar 

  127. Wisniewski, H., Terry, R. D.: Neurofibrillary pathology. J. Neuropath. Exp. Neurol. 19, 163–176 (1970)

    Article  Google Scholar 

  128. Witman, G. B., Fay, R., Plummer, J.: Chlamydomonas mutants: evidence for the roles of specific axonemal components in flagellar movement. In: Cell Motility (eds.: R. Goldman, T. Pollard, J. Rosenbaum), pp. 969–986. Cold Spring Harbor Lab. 1976

    Google Scholar 

  129. Yahara, I., Edelman, G. M.: Electron microscopic analysis of the modulation of lymphocyte receptor mobility. Exp. Cell Res. 91, 125–142 (1975)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Dustin, P. (1978). Cell Movement. In: Microtubules. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96436-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96436-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96438-1

  • Online ISBN: 978-3-642-96436-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics